Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New junior research group focuses on improved utilization of raw materials

02.04.2014

Euro 1.4 million for research project on “Contribution of material cascade utilization to sustainable resource management”

A car tire at first, in a second life maybe an insulating board or the sole of a shoe, then floor covering in a third life – if a raw material made from crude oil, which to this day remains the main constituent of car tires, is used several times and in multiple stages it is called “cascade use”.


Mines for Copper and Molybdenum in the North of Chile. Oldenburg University, Cascade Use

This will be the focus of a new junior research group at the Carl von Ossietzky University Oldenburg, which is led by Dr.-Ing. Alexandra Pehlken and will commence work in the coming days. 

The interdisciplinary junior research group is called “Contribution of material cascade utilization to sustainable resource management” or short “Cascade Use” and will be sponsored by the Bundesministerium für Bildung und Forschung (BMBF)’s “Global Change” programme with nearly Euro 1.4 million over a period of four years, with the possibility of adding another year if necessary.

The research group is part of the School of Computing Science, Business Administration, Economics and Law of the University of Oldenburg and consists of five co-workers. In addition to the project leader and adjunct, the group will give three doctoral students the opportunity to do research and obtain their doctorates.

One of the junior scientists is from the Shanghai Jiao Tong University. “Through our close cooperation with the Chinese university we will be able to gain valuable impulses”, Pehlken asserts. “We are going to collaborate with Professor Chen Ming, one of the most well-known Chinese recycling experts. Among other things, analyses of this exploding market in Asia will very much enhance our research. Moreover, we hope that together we can contribute to increasing the acceptance of recycling in China.”

The aim of the “Cascade Use” research is to utilize raw materials within the economic cycle for as long as possible and thus protect the environment. “This not only offers ecological benefits, but also very large and so far mostly untapped economic potentials” says Pehlken.
The group deals with the question of how materials are integrated into product life cycles and when they become available for reuse or remanufacturing.

With this issue in mind, the group develops a tool to assist decision-makers in economics, administration and politics in recognizing and evaluating the potentials for optimal resource use with the least possible environmental impacts. To do so, the scientists employ material flow analyses with reference to technological, ecological and economic aspects. Developing a method for estimating the life cycle-spanning material availability, they also, for example, determine the CO2 emissions within the recycling hierarchy.

The group particularly focuses on primary resources, such as iron, copper, aluminium and magnesium, as well as on the valuable and often critical rare earth metals. These include europium, which is needed for fluorescent lamps and plasma screens, and neodymium, which is part of the strong, small permanent magnets, high performance microphones, high-efficiency speakers, wind power turbines and high performance electric motors. Hardly any of today’s key technologies could function without the use of rare earth elements.

About Alexandra Pehlken:
Alexandra Pehlken (42) studied mining at the Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen) where she also gained her doctorate as engineer in 2002. The scientist, who was born in Oldenburg, has carried out research in Germany,, South Africa and China. Furthermore, a Lise-Meitner-Scholarship brought her to the ‘Natural Resources Canada’ Institute in Ottawa (Canada), where she dealt with the recycling of used car tires. Pehlken also led several research projects, for example, a project on feed production at the ‘Institute for Integrated Product Development’ (BIK) at the University of Bremen. Since 2012, the engineer has been working as a project leader in the field of energy and society at the Center for Environmental and Sustainability Research (COAST) of the University of Oldenburg. Besides, she is involved in national and international panels. In 2011, Pehlken was appointed Associated Junior Fellow at the Hanse-Wissenschaftskolleg Delmenhorst (HWK).

Contact: Dr.-Ing. Alexandra Pehlken, COAST- Center for Environmental and Sustainability Research (COAST), Tel. 0441/798-4796, E-Mail: alexandra.pehlken@uni-oldenburg.de

Weitere Informationen:

http://www.uni-oldenburg.de/cascadeuse/

Dr. Corinna Dahm-Brey | idw - Informationsdienst Wissenschaft

Further reports about: Environmental Sustainability analyses ecological leader materials raw

More articles from Awards Funding:

nachricht 11 million Euros for research into magnetic field sensors for medical diagnostics
27.05.2016 | Christian-Albrechts-Universität zu Kiel

nachricht Laser-based Production Process for High Efficiency Solar Cells Wins Award
11.05.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>