Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New junior research group focuses on improved utilization of raw materials

02.04.2014

Euro 1.4 million for research project on “Contribution of material cascade utilization to sustainable resource management”

A car tire at first, in a second life maybe an insulating board or the sole of a shoe, then floor covering in a third life – if a raw material made from crude oil, which to this day remains the main constituent of car tires, is used several times and in multiple stages it is called “cascade use”.


Mines for Copper and Molybdenum in the North of Chile. Oldenburg University, Cascade Use

This will be the focus of a new junior research group at the Carl von Ossietzky University Oldenburg, which is led by Dr.-Ing. Alexandra Pehlken and will commence work in the coming days. 

The interdisciplinary junior research group is called “Contribution of material cascade utilization to sustainable resource management” or short “Cascade Use” and will be sponsored by the Bundesministerium für Bildung und Forschung (BMBF)’s “Global Change” programme with nearly Euro 1.4 million over a period of four years, with the possibility of adding another year if necessary.

The research group is part of the School of Computing Science, Business Administration, Economics and Law of the University of Oldenburg and consists of five co-workers. In addition to the project leader and adjunct, the group will give three doctoral students the opportunity to do research and obtain their doctorates.

One of the junior scientists is from the Shanghai Jiao Tong University. “Through our close cooperation with the Chinese university we will be able to gain valuable impulses”, Pehlken asserts. “We are going to collaborate with Professor Chen Ming, one of the most well-known Chinese recycling experts. Among other things, analyses of this exploding market in Asia will very much enhance our research. Moreover, we hope that together we can contribute to increasing the acceptance of recycling in China.”

The aim of the “Cascade Use” research is to utilize raw materials within the economic cycle for as long as possible and thus protect the environment. “This not only offers ecological benefits, but also very large and so far mostly untapped economic potentials” says Pehlken.
The group deals with the question of how materials are integrated into product life cycles and when they become available for reuse or remanufacturing.

With this issue in mind, the group develops a tool to assist decision-makers in economics, administration and politics in recognizing and evaluating the potentials for optimal resource use with the least possible environmental impacts. To do so, the scientists employ material flow analyses with reference to technological, ecological and economic aspects. Developing a method for estimating the life cycle-spanning material availability, they also, for example, determine the CO2 emissions within the recycling hierarchy.

The group particularly focuses on primary resources, such as iron, copper, aluminium and magnesium, as well as on the valuable and often critical rare earth metals. These include europium, which is needed for fluorescent lamps and plasma screens, and neodymium, which is part of the strong, small permanent magnets, high performance microphones, high-efficiency speakers, wind power turbines and high performance electric motors. Hardly any of today’s key technologies could function without the use of rare earth elements.

About Alexandra Pehlken:
Alexandra Pehlken (42) studied mining at the Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen) where she also gained her doctorate as engineer in 2002. The scientist, who was born in Oldenburg, has carried out research in Germany,, South Africa and China. Furthermore, a Lise-Meitner-Scholarship brought her to the ‘Natural Resources Canada’ Institute in Ottawa (Canada), where she dealt with the recycling of used car tires. Pehlken also led several research projects, for example, a project on feed production at the ‘Institute for Integrated Product Development’ (BIK) at the University of Bremen. Since 2012, the engineer has been working as a project leader in the field of energy and society at the Center for Environmental and Sustainability Research (COAST) of the University of Oldenburg. Besides, she is involved in national and international panels. In 2011, Pehlken was appointed Associated Junior Fellow at the Hanse-Wissenschaftskolleg Delmenhorst (HWK).

Contact: Dr.-Ing. Alexandra Pehlken, COAST- Center for Environmental and Sustainability Research (COAST), Tel. 0441/798-4796, E-Mail: alexandra.pehlken@uni-oldenburg.de

Weitere Informationen:

http://www.uni-oldenburg.de/cascadeuse/

Dr. Corinna Dahm-Brey | idw - Informationsdienst Wissenschaft

Further reports about: Environmental Sustainability analyses ecological leader materials raw

More articles from Awards Funding:

nachricht Breakthrough Prize for Kim Nasmyth
04.12.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht The key to chemical transformations
29.11.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>