Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

John Rogers receives $500,000 Lemelson-MIT Prize

15.06.2011
John A. Rogers, the Lee J. Flory-Founder Chair in Engineering at the University of Illinois, has won the 2011 Lemelson-MIT Prize. The annual award recognizes outstanding innovation and creativity.

Rogers will accept the $500,000 prize – one of the world’s largest single cash prizes for invention – and present his accomplishments to the public at a ceremony during the Lemelson-MIT program’s annual EurekaFest at the Massachusetts Institute of Technology June 15-18.

Renowned for his recent pioneering work with semiconductor materials and flexible, stretchable electronics, Rogers applies his expertise to devise technology solutions across such broad fields as solar power, biointegrated electronics, sensing, thin film metrology and fiber optics.

Rogers combines soft, stretchable materials with micro-and nanoscale electronic components to create classes of devices with a wide range of practical applications. His recent work has produced devices from tiny eye-like cameras to less-invasive surgical tools to biocompatible sensor arrays.

Ilesanmi Adesida, the dean of the College of Engineering at Illinois, cited Rogers’ ability to span across incongruent fields of work as a reason for his success.

“Rogers can move effortlessly from science to technology and to practical applications with a unique vision for the translation of science to products,” Adesida said.

“His work exemplifies how to effectively bolster sciences and technology so the United States can successfully compete and prosper in the global community of the 21st century.”

Not content to merely invent, Rogers also is an entrepreneur. He is co-founder and director of the device companies MC10 Inc. and Semprius Inc., both of which work to apply and commercialize technology he has invented. Previously, he co-founded a successful company, Active Impulse Systems Inc., that commercialized his picosecond laser techniques for analysis of thin films used in the semiconductor industry and was later acquired by a large company.

The son of a physicist and a poet, Rogers earned his doctorate in physical chemistry from MIT in 1995. Since joining the Illinois faculty in January 2003, he has distinguished himself as a mentor, encouraging his large group of students to collaboration, perseverance and innovation. He is a professor of materials science and engineering, of chemistry, of mechanical science and engineering, of bioengineering and of electrical and computer engineering.

Rogers, who is affiliated with the U. of I. Beckman Institute for Advanced Science and Technology, has written more than 300 published papers and holds more than 80 patents. Among his many honors, he has been elected to the National Academy of Engineering, awarded a MacArthur fellowship, and named a fellow of the Institute for Electrical and Electronics Engineers, the American Physical Society, the Materials Research Society, and the American Association for the Advancement of Science.

Jerome H. Lemelson, one of America’s most prolific inventors, and his wife, Dorothy, founded the Lemelson-MIT Program at MIT in 1994. It is funded by The Lemelson Foundation, a private philanthropy that sparks, sustains and celebrates innovation and the inventive spirit. It supports projects in the U.S. and developing countries that nurture innovators and unleash invention to advance economic, social and environmentally sustainable development.

U. of I. News Bureau | University of Illinois
Further information:
http://www.illinois.edu

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>