Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Rising Star award for Freiburg diabetes researcher

01.10.2013
J. Andrew Pospisilik receives a young talent award for new concept about emergence of diabetes

Almost every sixth human worldwide suffers from diabetes, obesity or both. Interestingly, genetic differences can only explain a proportion of cases. A second, more enigmatic regulatory system seems to play a central role in the development of the disease: so-called ‘epi’genetic regulation.

PhD student Tess Lu and the Freiburg scientist J. Andrew Pospisilik from the Max Planck Institute of Immunobiology and Epigenetics found evidence that type-2 diabetes may result in part from insulin cells that lose their epigenetic memory, and thus, their function. For upcoming studies, Pospisilik was awarded with a Rising Star award at the conference of the European Association for the Study of Diabetes in Barcelona.

Epigenetic regulation determines gene activity in different cell types and acts as a kind of cell-type specific memory. This epigenetic memory can be modified by external factors such as diet and stress. At the same time it can remain conserved throughout many cell divisions and even generations.

In 2012, researchers unraveled a long overseen mechanism for how we develop type-2 diabetes. Rather than dying, or shutting down function, insulin producing beta-cells seemed to be “forgetting” their fate and reverting towards a more stem cell like identity. Although this idea is new, the Pospisilik group was able to recreate this unique disease pathology by controlling epigenetic state. This finding will help enable researchers around the world to investigate the new diabetes form in great detail.

The Freiburg researchers switched off the gene for an epigenetic regulator previously shown to control entire programs of cellular identity. Animals with this modification were first healthy and developed normal insulin producing cells. But at around middle-age, the cells forgot their function and the animals could not control their blood sugar anymore. The researchers did not find any hints for inflammations, cell death or cell proliferation, leaving behind ‘ghost-like’ cells with no clear markers of their former selves.

With the “rising star” award, Pospisilik aims to investigate the epigenetic profile of individual cells and find out, which epigenetic alterations in detail are involved in diabetes development. The research group will combine cellular, biochemical and analytic methods and the new data will be easily accessible for other researchers through an open access platform.

“These studies will give the diabetes community some first insights into how epigenetic profiles remain stable and why insulin producing cells forget their function,” says Pospisilik. “The research is suited to make an important contribution to fundamental concepts such as stem cell differentiation. At the same time, the research will lead to a deeper understanding of a disease that affects millions of people. It may even open new therapeutic strategies.”

J. Andrew Pospisilik was born in 1976 in Vancouver. Since 2010, he leads his own laboratory at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg.

Contact:
J. Andrew Pospisilik
Max Planck Institute of Immunobiology and Epigenetics, Freiburg
Phone: +49 7615 108-757
Email: pospisilik@­immunbio.mpg.de
Johannes Faber
Max Planck Institute of Immunobiology and Epigenetics, Freiburg
Phone: +49 761 5108-368
Email: presse@­ie-freiburg.mpg.de

Dr Harald Rösch | idw
Further information:
http://www.­immunbio.mpg.de

More articles from Awards Funding:

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>