Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Rising Star award for Freiburg diabetes researcher

01.10.2013
J. Andrew Pospisilik receives a young talent award for new concept about emergence of diabetes

Almost every sixth human worldwide suffers from diabetes, obesity or both. Interestingly, genetic differences can only explain a proportion of cases. A second, more enigmatic regulatory system seems to play a central role in the development of the disease: so-called ‘epi’genetic regulation.

PhD student Tess Lu and the Freiburg scientist J. Andrew Pospisilik from the Max Planck Institute of Immunobiology and Epigenetics found evidence that type-2 diabetes may result in part from insulin cells that lose their epigenetic memory, and thus, their function. For upcoming studies, Pospisilik was awarded with a Rising Star award at the conference of the European Association for the Study of Diabetes in Barcelona.

Epigenetic regulation determines gene activity in different cell types and acts as a kind of cell-type specific memory. This epigenetic memory can be modified by external factors such as diet and stress. At the same time it can remain conserved throughout many cell divisions and even generations.

In 2012, researchers unraveled a long overseen mechanism for how we develop type-2 diabetes. Rather than dying, or shutting down function, insulin producing beta-cells seemed to be “forgetting” their fate and reverting towards a more stem cell like identity. Although this idea is new, the Pospisilik group was able to recreate this unique disease pathology by controlling epigenetic state. This finding will help enable researchers around the world to investigate the new diabetes form in great detail.

The Freiburg researchers switched off the gene for an epigenetic regulator previously shown to control entire programs of cellular identity. Animals with this modification were first healthy and developed normal insulin producing cells. But at around middle-age, the cells forgot their function and the animals could not control their blood sugar anymore. The researchers did not find any hints for inflammations, cell death or cell proliferation, leaving behind ‘ghost-like’ cells with no clear markers of their former selves.

With the “rising star” award, Pospisilik aims to investigate the epigenetic profile of individual cells and find out, which epigenetic alterations in detail are involved in diabetes development. The research group will combine cellular, biochemical and analytic methods and the new data will be easily accessible for other researchers through an open access platform.

“These studies will give the diabetes community some first insights into how epigenetic profiles remain stable and why insulin producing cells forget their function,” says Pospisilik. “The research is suited to make an important contribution to fundamental concepts such as stem cell differentiation. At the same time, the research will lead to a deeper understanding of a disease that affects millions of people. It may even open new therapeutic strategies.”

J. Andrew Pospisilik was born in 1976 in Vancouver. Since 2010, he leads his own laboratory at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg.

Contact:
J. Andrew Pospisilik
Max Planck Institute of Immunobiology and Epigenetics, Freiburg
Phone: +49 7615 108-757
Email: pospisilik@­immunbio.mpg.de
Johannes Faber
Max Planck Institute of Immunobiology and Epigenetics, Freiburg
Phone: +49 761 5108-368
Email: presse@­ie-freiburg.mpg.de

Dr Harald Rösch | idw
Further information:
http://www.­immunbio.mpg.de

More articles from Awards Funding:

nachricht IVAM Marketing Prize recognizes convincing technology marketing for the tenth time
22.08.2017 | IVAM Fachverband für Mikrotechnik

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>