Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EUR 2.75 million EU grant for cloud researcher Stephan Borrmann

31.10.2012
The Mainz physicist is awarded an ERC Advanced Grant for research on the aerosol composition in the upper atmosphere

Professor Dr. Stephan Borrmann receives a grant of EUR 2.75 million from the European Research Council (ERC) for research into the chemical composition of aerosols and clouds in the upper atmosphere.

The ERC Advanced Grant is one the most highly regarded funding measures of the European Union (EU), which is awarded to individual outstanding researchers. Borrmann is professor at the Institute of Atmospheric Physics at Johannes Gutenberg University Mainz and Director at the Max Planck Institute for Chemistry in Mainz.

The project "In-situ experiments on the chemical composition of high altitude aerosols and clouds in the tropical upper troposphere and lower stratosphere" (EXCATRO) will be funded for five years starting in 2013. The aim of the project is to examine the layer of the upper troposphere and the lower stratosphere above the tropics and the subtropics – at an altitude of 14 to 21 kilometers. The project will focus on aerosols, i.e., tiny solid or liquid particles in the air. Borrmann and his team will take several aircraft-based measurements in this atmospheric layer. Research flights in such heights are a major technological challenge, and only a few have been carried out yet.

"Clouds and aerosols are the most important but least understood components in the entire climate system. In the extremely dynamic layer at the gateway of the upper troposphere to the lower stratosphere they have an impact on the global atmosphere and our climate, particularly in the tropics," explains Borrmann.

Aerosols are generated by natural processes over deserts and oceans, for example, and also in vegetation. Other major contributing factors are anthropogenic emissions, such as the burning of fossil fuels and biomass. It is known that the aerosol particles in the tropics are transported into the lower stratosphere by upward air currents. Once they enter the lower stratosphere, they are slowly distributed globally. In the polar regions, they form the so-called polar stratospheric clouds, which then contribute to ozone depletion and destruction. "To determine the effect of aerosols for example in climate models and on the chemistry of the atmosphere, we need not only to understand their composition. We also need to know where exactly the particles arise from, whether they are of human origin or result from natural processes," adds Borrmann.

Within the five-year ERC Advanced Grant project, Professor Dr. Stephan Borrmann will develop special fully automated aerosol analyzers. They can then be used aboard the former Russian spy plane M-55 Geophysica, which has been reconstructed into a high-altitude research aircraft. Geophysica and a NASA research aircraft are the only high-altitude research aircrafts that can reach heights of up to 21 kilometers.

ERC Advanced Grants are awarded to outstanding scientists to conduct projects that are considered to be highly speculative due to their innovative approach, but which, because of this, can open up new paths in the respective research area. The grant is awarded to excellent researchers who already have a track record of significant research achievements and who have worked for at least ten years successfully at the highest international level. The only criteria considered when deciding to award ERC funding are the scientific excellence of the researchers in question and the nature of their research projects. An ERC Advanced Grant thus represents recognition of the recipient’s individual work.

IMAGES

http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc01.jpg
Professor Dr. Stephan Borrmann with a laser optical cloud particle measuring instrument

photo/©: S. Borrmann

http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc02.jpg
Polar stratospheric clouds
photo/©: Ralf Weigel, Institute of Atmospheric Physics, JGU
http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc03.jpg
High-altitude research aircraft Geophysica
photo/©: S. Borrmann
FURTHER INFORMATION
Professor Dr. Stephan Borrmann
Institute of Atmospheric Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone: +49 6131– 39-23396
fax: +49 6131– 39-23532
http://www.uni-mainz.de/FB/Physik/IPA/
Professor Dr. Stephan Borrmann
Max Planck Institute for Chemistry
Hahn-Meitner-Weg 1
55128 Mainz, GERMANY
phone: +49 6131 305-5000
fax: +49 6131 305-5009
e-mail: stephan.borrmann@mpic.de
http://www.mpic.de/en/research/particle-chemistry.html

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15785_ENG_HTML.php
http://www.mpic.de/en/research/particle-chemistry.html

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>