Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EUR 2.75 million EU grant for cloud researcher Stephan Borrmann

31.10.2012
The Mainz physicist is awarded an ERC Advanced Grant for research on the aerosol composition in the upper atmosphere

Professor Dr. Stephan Borrmann receives a grant of EUR 2.75 million from the European Research Council (ERC) for research into the chemical composition of aerosols and clouds in the upper atmosphere.

The ERC Advanced Grant is one the most highly regarded funding measures of the European Union (EU), which is awarded to individual outstanding researchers. Borrmann is professor at the Institute of Atmospheric Physics at Johannes Gutenberg University Mainz and Director at the Max Planck Institute for Chemistry in Mainz.

The project "In-situ experiments on the chemical composition of high altitude aerosols and clouds in the tropical upper troposphere and lower stratosphere" (EXCATRO) will be funded for five years starting in 2013. The aim of the project is to examine the layer of the upper troposphere and the lower stratosphere above the tropics and the subtropics – at an altitude of 14 to 21 kilometers. The project will focus on aerosols, i.e., tiny solid or liquid particles in the air. Borrmann and his team will take several aircraft-based measurements in this atmospheric layer. Research flights in such heights are a major technological challenge, and only a few have been carried out yet.

"Clouds and aerosols are the most important but least understood components in the entire climate system. In the extremely dynamic layer at the gateway of the upper troposphere to the lower stratosphere they have an impact on the global atmosphere and our climate, particularly in the tropics," explains Borrmann.

Aerosols are generated by natural processes over deserts and oceans, for example, and also in vegetation. Other major contributing factors are anthropogenic emissions, such as the burning of fossil fuels and biomass. It is known that the aerosol particles in the tropics are transported into the lower stratosphere by upward air currents. Once they enter the lower stratosphere, they are slowly distributed globally. In the polar regions, they form the so-called polar stratospheric clouds, which then contribute to ozone depletion and destruction. "To determine the effect of aerosols for example in climate models and on the chemistry of the atmosphere, we need not only to understand their composition. We also need to know where exactly the particles arise from, whether they are of human origin or result from natural processes," adds Borrmann.

Within the five-year ERC Advanced Grant project, Professor Dr. Stephan Borrmann will develop special fully automated aerosol analyzers. They can then be used aboard the former Russian spy plane M-55 Geophysica, which has been reconstructed into a high-altitude research aircraft. Geophysica and a NASA research aircraft are the only high-altitude research aircrafts that can reach heights of up to 21 kilometers.

ERC Advanced Grants are awarded to outstanding scientists to conduct projects that are considered to be highly speculative due to their innovative approach, but which, because of this, can open up new paths in the respective research area. The grant is awarded to excellent researchers who already have a track record of significant research achievements and who have worked for at least ten years successfully at the highest international level. The only criteria considered when deciding to award ERC funding are the scientific excellence of the researchers in question and the nature of their research projects. An ERC Advanced Grant thus represents recognition of the recipient’s individual work.

IMAGES

http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc01.jpg
Professor Dr. Stephan Borrmann with a laser optical cloud particle measuring instrument

photo/©: S. Borrmann

http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc02.jpg
Polar stratospheric clouds
photo/©: Ralf Weigel, Institute of Atmospheric Physics, JGU
http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc03.jpg
High-altitude research aircraft Geophysica
photo/©: S. Borrmann
FURTHER INFORMATION
Professor Dr. Stephan Borrmann
Institute of Atmospheric Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone: +49 6131– 39-23396
fax: +49 6131– 39-23532
http://www.uni-mainz.de/FB/Physik/IPA/
Professor Dr. Stephan Borrmann
Max Planck Institute for Chemistry
Hahn-Meitner-Weg 1
55128 Mainz, GERMANY
phone: +49 6131 305-5000
fax: +49 6131 305-5009
e-mail: stephan.borrmann@mpic.de
http://www.mpic.de/en/research/particle-chemistry.html

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15785_ENG_HTML.php
http://www.mpic.de/en/research/particle-chemistry.html

More articles from Awards Funding:

nachricht ERC: Six Advanced Grants for Helmholtz
10.04.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht German Federal Government Promotes Health Care Research
29.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>