Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EUR 2.75 million EU grant for cloud researcher Stephan Borrmann

31.10.2012
The Mainz physicist is awarded an ERC Advanced Grant for research on the aerosol composition in the upper atmosphere

Professor Dr. Stephan Borrmann receives a grant of EUR 2.75 million from the European Research Council (ERC) for research into the chemical composition of aerosols and clouds in the upper atmosphere.

The ERC Advanced Grant is one the most highly regarded funding measures of the European Union (EU), which is awarded to individual outstanding researchers. Borrmann is professor at the Institute of Atmospheric Physics at Johannes Gutenberg University Mainz and Director at the Max Planck Institute for Chemistry in Mainz.

The project "In-situ experiments on the chemical composition of high altitude aerosols and clouds in the tropical upper troposphere and lower stratosphere" (EXCATRO) will be funded for five years starting in 2013. The aim of the project is to examine the layer of the upper troposphere and the lower stratosphere above the tropics and the subtropics – at an altitude of 14 to 21 kilometers. The project will focus on aerosols, i.e., tiny solid or liquid particles in the air. Borrmann and his team will take several aircraft-based measurements in this atmospheric layer. Research flights in such heights are a major technological challenge, and only a few have been carried out yet.

"Clouds and aerosols are the most important but least understood components in the entire climate system. In the extremely dynamic layer at the gateway of the upper troposphere to the lower stratosphere they have an impact on the global atmosphere and our climate, particularly in the tropics," explains Borrmann.

Aerosols are generated by natural processes over deserts and oceans, for example, and also in vegetation. Other major contributing factors are anthropogenic emissions, such as the burning of fossil fuels and biomass. It is known that the aerosol particles in the tropics are transported into the lower stratosphere by upward air currents. Once they enter the lower stratosphere, they are slowly distributed globally. In the polar regions, they form the so-called polar stratospheric clouds, which then contribute to ozone depletion and destruction. "To determine the effect of aerosols for example in climate models and on the chemistry of the atmosphere, we need not only to understand their composition. We also need to know where exactly the particles arise from, whether they are of human origin or result from natural processes," adds Borrmann.

Within the five-year ERC Advanced Grant project, Professor Dr. Stephan Borrmann will develop special fully automated aerosol analyzers. They can then be used aboard the former Russian spy plane M-55 Geophysica, which has been reconstructed into a high-altitude research aircraft. Geophysica and a NASA research aircraft are the only high-altitude research aircrafts that can reach heights of up to 21 kilometers.

ERC Advanced Grants are awarded to outstanding scientists to conduct projects that are considered to be highly speculative due to their innovative approach, but which, because of this, can open up new paths in the respective research area. The grant is awarded to excellent researchers who already have a track record of significant research achievements and who have worked for at least ten years successfully at the highest international level. The only criteria considered when deciding to award ERC funding are the scientific excellence of the researchers in question and the nature of their research projects. An ERC Advanced Grant thus represents recognition of the recipient’s individual work.

IMAGES

http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc01.jpg
Professor Dr. Stephan Borrmann with a laser optical cloud particle measuring instrument

photo/©: S. Borrmann

http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc02.jpg
Polar stratospheric clouds
photo/©: Ralf Weigel, Institute of Atmospheric Physics, JGU
http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc03.jpg
High-altitude research aircraft Geophysica
photo/©: S. Borrmann
FURTHER INFORMATION
Professor Dr. Stephan Borrmann
Institute of Atmospheric Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone: +49 6131– 39-23396
fax: +49 6131– 39-23532
http://www.uni-mainz.de/FB/Physik/IPA/
Professor Dr. Stephan Borrmann
Max Planck Institute for Chemistry
Hahn-Meitner-Weg 1
55128 Mainz, GERMANY
phone: +49 6131 305-5000
fax: +49 6131 305-5009
e-mail: stephan.borrmann@mpic.de
http://www.mpic.de/en/research/particle-chemistry.html

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15785_ENG_HTML.php
http://www.mpic.de/en/research/particle-chemistry.html

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>