Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EUR 2.75 million EU grant for cloud researcher Stephan Borrmann

31.10.2012
The Mainz physicist is awarded an ERC Advanced Grant for research on the aerosol composition in the upper atmosphere

Professor Dr. Stephan Borrmann receives a grant of EUR 2.75 million from the European Research Council (ERC) for research into the chemical composition of aerosols and clouds in the upper atmosphere.

The ERC Advanced Grant is one the most highly regarded funding measures of the European Union (EU), which is awarded to individual outstanding researchers. Borrmann is professor at the Institute of Atmospheric Physics at Johannes Gutenberg University Mainz and Director at the Max Planck Institute for Chemistry in Mainz.

The project "In-situ experiments on the chemical composition of high altitude aerosols and clouds in the tropical upper troposphere and lower stratosphere" (EXCATRO) will be funded for five years starting in 2013. The aim of the project is to examine the layer of the upper troposphere and the lower stratosphere above the tropics and the subtropics – at an altitude of 14 to 21 kilometers. The project will focus on aerosols, i.e., tiny solid or liquid particles in the air. Borrmann and his team will take several aircraft-based measurements in this atmospheric layer. Research flights in such heights are a major technological challenge, and only a few have been carried out yet.

"Clouds and aerosols are the most important but least understood components in the entire climate system. In the extremely dynamic layer at the gateway of the upper troposphere to the lower stratosphere they have an impact on the global atmosphere and our climate, particularly in the tropics," explains Borrmann.

Aerosols are generated by natural processes over deserts and oceans, for example, and also in vegetation. Other major contributing factors are anthropogenic emissions, such as the burning of fossil fuels and biomass. It is known that the aerosol particles in the tropics are transported into the lower stratosphere by upward air currents. Once they enter the lower stratosphere, they are slowly distributed globally. In the polar regions, they form the so-called polar stratospheric clouds, which then contribute to ozone depletion and destruction. "To determine the effect of aerosols for example in climate models and on the chemistry of the atmosphere, we need not only to understand their composition. We also need to know where exactly the particles arise from, whether they are of human origin or result from natural processes," adds Borrmann.

Within the five-year ERC Advanced Grant project, Professor Dr. Stephan Borrmann will develop special fully automated aerosol analyzers. They can then be used aboard the former Russian spy plane M-55 Geophysica, which has been reconstructed into a high-altitude research aircraft. Geophysica and a NASA research aircraft are the only high-altitude research aircrafts that can reach heights of up to 21 kilometers.

ERC Advanced Grants are awarded to outstanding scientists to conduct projects that are considered to be highly speculative due to their innovative approach, but which, because of this, can open up new paths in the respective research area. The grant is awarded to excellent researchers who already have a track record of significant research achievements and who have worked for at least ten years successfully at the highest international level. The only criteria considered when deciding to award ERC funding are the scientific excellence of the researchers in question and the nature of their research projects. An ERC Advanced Grant thus represents recognition of the recipient’s individual work.

IMAGES

http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc01.jpg
Professor Dr. Stephan Borrmann with a laser optical cloud particle measuring instrument

photo/©: S. Borrmann

http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc02.jpg
Polar stratospheric clouds
photo/©: Ralf Weigel, Institute of Atmospheric Physics, JGU
http://www.uni-mainz.de/bilder_presse/08_physik_atmosphaere_borrmann_erc03.jpg
High-altitude research aircraft Geophysica
photo/©: S. Borrmann
FURTHER INFORMATION
Professor Dr. Stephan Borrmann
Institute of Atmospheric Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone: +49 6131– 39-23396
fax: +49 6131– 39-23532
http://www.uni-mainz.de/FB/Physik/IPA/
Professor Dr. Stephan Borrmann
Max Planck Institute for Chemistry
Hahn-Meitner-Weg 1
55128 Mainz, GERMANY
phone: +49 6131 305-5000
fax: +49 6131 305-5009
e-mail: stephan.borrmann@mpic.de
http://www.mpic.de/en/research/particle-chemistry.html

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15785_ENG_HTML.php
http://www.mpic.de/en/research/particle-chemistry.html

More articles from Awards Funding:

nachricht “Next Generation of Science Journalists” Award: Applications now open
21.05.2015 | World Health Summit

nachricht Connecting science with society - EU boost for polar science
19.05.2015 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>