Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EMBO Gold Medal 2012 awarded to Jiøí Friml

27.06.2012
EMBO today announced Jiøí Friml of the Department of Plant Systems Biology, VIB and Ghent University, Belgium and Central European Institute of Technology, University Brno, Czech Republic as the winner of the 2012 EMBO Gold Medal.

Friml receives the award for defining how the plant hormone auxin functions to regulate plant development. He was also recognized for showing how the auxin-governed molecular processes optimise adaptation of plant development and growth to ever-changing environmental conditions.

The 39-year-old scientist has published more than 130 original research publications and reviews in top international journals and belongs to the most cited plant biologists worldwide.

“His groundbreaking results influence and continue to shape present and future efforts in a number of areas of plant biology research,” stated EMBO Member Ferenc Nagy. The results of Friml’s research are of major importance to agriculture as they provide a basis for targeted engineering that could lead to the development of plants that produce higher yields or which are more resistant to drought.

“Being awarded by my peers from EMBO is an immense honour and gives me great encouragement for my further work. I would like to think that this award is not only for me but also in a wider sense for plant research which deserves more support and could definitely benefit from more awareness,” said the Gold Medal winner.

Jiøí Friml’s research highlights include:

- Showing that transport-dependent morphogenetic auxin gradients and maxima underlie processes such as embryonal development, formation of all plant organs, differentiation and regeneration of tissues as well as responses to external signals such as light and gravity
- Establishing the concept that auxin acts as a versatile trigger providing spatial and temporal information to reprogram cellular behavior
- Demonstrating the clathrin-mediated mechanism of endocytosis in plants along with the developmental significance of this process in the field of plant cell biology

- Revealing mechanisms that govern cell polarity in plants and its importance for both hormonal signaling and development

Career stages

Jiøí Friml performed his PhD work at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, and obtained his PhD in Biology from the University of Cologne in 2000. He was also awarded a PhD in Biochemistry in 2002 from Masaryk University in Brno, Czech Republic. In his doctoral studies, he was already providing crucial insight into the mechanisms of transport and distribution of auxin and its role in plant development. For his outstanding scientific contributions during his PhD studies, the Max Planck Society awarded him the prestigious Otto-Hahn Medal.

After finishing his doctoral studies, he received a grant from the Volkswagen Foundation to start his independent research group. At the age of 33, Friml became a professor and head of the Institute of Plant Cell Biology in Göttingen, Germany. Currently, he is a professor in the Department of Plant Systems Biology at the University of Ghent and head of a research group at the Flanders Institute of Biotechnology in Ghent. He also holds an appointment with the Central European Institute of Technology, University Brno, Czech Republic. Friml will move to The Institute of Science and Technology, Austria, at the end of 2012.

The achievements of the Czech-born scientist have been internationally recognised: he was elected a member of EMBO, he is a fellow of the American Association for the Advancement of Science and the recipient of the Heinz-Meyer Leibnitz prize and the Körber European Science Award.

Jiøí Friml will receive the EMBO Gold Medal and an award of 10,000 euros on 23 September 2012 at The EMBO Meeting in Nice where he will give a lecture about his research.

Yvonne Kaul | idw
Further information:
http://www.embo.org/news-a-media-centre/press-releases/embo-gold-medal-2012-awarded-to-jiri-friml.html

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>