Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Durham University gets £16.7million grant to unravel secrets of the Universe

27.01.2009
Durham University physicists have received a £16.7m grant to unravel the secrets behind the formation of the Universe.

The ten-year grant has been awarded by the Science and Technology Facilities Council (STFC) to the University’s Institute for Particle Physics Phenomenology (IPPP).

The IPPP is a research centre dedicated to understanding what happens when high energy particles are smashed into each other at very high energies.

Experts from the IPPP are providing the theory and analysis behind a number of experiments to be carried out at the Large Hadron Collider (LHC), a gigantic particle accelerator built 100m underground on the Swiss/French border at Geneva, which aims to recreate conditions in the early Universe just after the Big Bang.

The new funding will allow the IPPP’s physicists to continue their world-class research into some of the Universe’s greatest secrets such as the mysteries surrounding antimatter and dark matter, the possibility of extra space-time dimensions and the existence of the elusive Higgs boson.

The centre is funded in partnership between the STFC and Durham University and the new grant will be enhanced by increased investment from the University.

Durham University’s increased investment will provide an extension to the Ogden Centre, which houses the IPPP, massively upgraded computer facilities and new permanent academic appointments.

It will also mean additional research positions and further funding for workshops, visitors and travel to support the wider UK phenomenology community.

Professor Nigel Glover, Director of the IPPP, said: “The IPPP has already won an international reputation for its research into particle physics.

“The new funding from STFC, together with the new investment from Durham University, will allow us to continue this vital link between theory and experiment and ensure that UK particle physics continues to thrive and play a pivotal role in large, ground-breaking experiments such as the Large Hadron Collider.

“It will also help the UK prepare for and contribute to the design and planning of physics programmes at future new facilities.”

The interplay between theory and experiment is vital to new developments and breakthroughs in particle physics and the understanding of our Universe.

Phenomenology is not only concerned with making theoretical predictions that can be tested by experimental facilities but also with using the experimental data gathered at these facilities to find evidence for new physics and to develop new theories. Close collaboration with experimental colleagues is a vital aspect of the work.

Projects like the LHC rely heavily on this marriage of theory and experiment as they are likely to produce completely new and unexpected results that will need interpreting.

Professor Keith Mason, Chief Executive of the STFC, said: “Funding the IPPP is a key element of STFC’s continued support of fundamental physics and we welcome the large investment in staff and buildings by the University.

“Since its creation in 2000, the IPPP has been a tremendous success and has revitalised phenomenology in the UK.”

Alex Thomas | alfa
Further information:
http://www.durham.ac.uk
http://www.ippp.dur.ac.uk/
http://www.scitech.ac.uk/

More articles from Awards Funding:

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>