Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Durham University gets £16.7million grant to unravel secrets of the Universe

27.01.2009
Durham University physicists have received a £16.7m grant to unravel the secrets behind the formation of the Universe.

The ten-year grant has been awarded by the Science and Technology Facilities Council (STFC) to the University’s Institute for Particle Physics Phenomenology (IPPP).

The IPPP is a research centre dedicated to understanding what happens when high energy particles are smashed into each other at very high energies.

Experts from the IPPP are providing the theory and analysis behind a number of experiments to be carried out at the Large Hadron Collider (LHC), a gigantic particle accelerator built 100m underground on the Swiss/French border at Geneva, which aims to recreate conditions in the early Universe just after the Big Bang.

The new funding will allow the IPPP’s physicists to continue their world-class research into some of the Universe’s greatest secrets such as the mysteries surrounding antimatter and dark matter, the possibility of extra space-time dimensions and the existence of the elusive Higgs boson.

The centre is funded in partnership between the STFC and Durham University and the new grant will be enhanced by increased investment from the University.

Durham University’s increased investment will provide an extension to the Ogden Centre, which houses the IPPP, massively upgraded computer facilities and new permanent academic appointments.

It will also mean additional research positions and further funding for workshops, visitors and travel to support the wider UK phenomenology community.

Professor Nigel Glover, Director of the IPPP, said: “The IPPP has already won an international reputation for its research into particle physics.

“The new funding from STFC, together with the new investment from Durham University, will allow us to continue this vital link between theory and experiment and ensure that UK particle physics continues to thrive and play a pivotal role in large, ground-breaking experiments such as the Large Hadron Collider.

“It will also help the UK prepare for and contribute to the design and planning of physics programmes at future new facilities.”

The interplay between theory and experiment is vital to new developments and breakthroughs in particle physics and the understanding of our Universe.

Phenomenology is not only concerned with making theoretical predictions that can be tested by experimental facilities but also with using the experimental data gathered at these facilities to find evidence for new physics and to develop new theories. Close collaboration with experimental colleagues is a vital aspect of the work.

Projects like the LHC rely heavily on this marriage of theory and experiment as they are likely to produce completely new and unexpected results that will need interpreting.

Professor Keith Mason, Chief Executive of the STFC, said: “Funding the IPPP is a key element of STFC’s continued support of fundamental physics and we welcome the large investment in staff and buildings by the University.

“Since its creation in 2000, the IPPP has been a tremendous success and has revitalised phenomenology in the UK.”

Alex Thomas | alfa
Further information:
http://www.durham.ac.uk
http://www.ippp.dur.ac.uk/
http://www.scitech.ac.uk/

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>