Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Durham University gets £16.7million grant to unravel secrets of the Universe

27.01.2009
Durham University physicists have received a £16.7m grant to unravel the secrets behind the formation of the Universe.

The ten-year grant has been awarded by the Science and Technology Facilities Council (STFC) to the University’s Institute for Particle Physics Phenomenology (IPPP).

The IPPP is a research centre dedicated to understanding what happens when high energy particles are smashed into each other at very high energies.

Experts from the IPPP are providing the theory and analysis behind a number of experiments to be carried out at the Large Hadron Collider (LHC), a gigantic particle accelerator built 100m underground on the Swiss/French border at Geneva, which aims to recreate conditions in the early Universe just after the Big Bang.

The new funding will allow the IPPP’s physicists to continue their world-class research into some of the Universe’s greatest secrets such as the mysteries surrounding antimatter and dark matter, the possibility of extra space-time dimensions and the existence of the elusive Higgs boson.

The centre is funded in partnership between the STFC and Durham University and the new grant will be enhanced by increased investment from the University.

Durham University’s increased investment will provide an extension to the Ogden Centre, which houses the IPPP, massively upgraded computer facilities and new permanent academic appointments.

It will also mean additional research positions and further funding for workshops, visitors and travel to support the wider UK phenomenology community.

Professor Nigel Glover, Director of the IPPP, said: “The IPPP has already won an international reputation for its research into particle physics.

“The new funding from STFC, together with the new investment from Durham University, will allow us to continue this vital link between theory and experiment and ensure that UK particle physics continues to thrive and play a pivotal role in large, ground-breaking experiments such as the Large Hadron Collider.

“It will also help the UK prepare for and contribute to the design and planning of physics programmes at future new facilities.”

The interplay between theory and experiment is vital to new developments and breakthroughs in particle physics and the understanding of our Universe.

Phenomenology is not only concerned with making theoretical predictions that can be tested by experimental facilities but also with using the experimental data gathered at these facilities to find evidence for new physics and to develop new theories. Close collaboration with experimental colleagues is a vital aspect of the work.

Projects like the LHC rely heavily on this marriage of theory and experiment as they are likely to produce completely new and unexpected results that will need interpreting.

Professor Keith Mason, Chief Executive of the STFC, said: “Funding the IPPP is a key element of STFC’s continued support of fundamental physics and we welcome the large investment in staff and buildings by the University.

“Since its creation in 2000, the IPPP has been a tremendous success and has revitalised phenomenology in the UK.”

Alex Thomas | alfa
Further information:
http://www.durham.ac.uk
http://www.ippp.dur.ac.uk/
http://www.scitech.ac.uk/

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>