Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2013 Nicholas Kurti European Science Prize for Dr. Lapo Bogani (1. Physikalisches Institut)

23.05.2013
Dr. Lapo Bogani, member of the 1. Physikalisches Institut, University of Stuttgart, has been awarded the 2013 Nicholas Kurti European Science Prize for his research on magnetic nanomaterials.

The award is one of the most prestigious honors available to young scientists, and is sponsored by Oxford Instruments, to commemorate Prof. Nicholas Kurti, who was the first to reach Microkelvin temperatures.

Lapo Bogani is the group leader of the Nanomagnetics group at the University of Stuttgart and comes from a strongly multidisciplinary background, working in a field of research that mixes chemistry and physics. His work concentrates on the study of molecular magnetic materials with quantum effects, their control using external sources (e.g. electrons or photons) and their integration in nanoscopic devices.

Previous winners include one of the discoverers of graphene (Kostantin Novoselov, later Nobel prize winner), one of the creators of circuit quantum electrodynamics (Andreas Wallraff, ETH Zürich), the leader of LNS at the Paul Scherrer Institut (Christian Rüegg), pioneers in quantum computation using molecules (John Morton) and quantum dots (Lieven Vandersypen and Ronald Hanson, TU Delft), and two leading scientists in nanoelectronics (Silvano De Franceschi , CEA Grenoble and Mathias Kläui, Professor at Mainz University).

Prof. George Pickett, chairman of the committee of senior scientists who assess the nominations, commented: “While the 2013 Nicholas Kurti Prize was characterised by a very strong field of candidates, the panel was pleased to choose Lapo Bogani as this year’s winner. Bogani has coupled nanoscience with magnetism to make ground-breaking advances in the field of nanomagnetic systems, and especially in molecular spintronics making use of single-molecule magnets. The work may lead to the use of controllable magnetic devices with single-molecule sensitivity.”

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de/

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>