Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White vans go green

11.11.2008
Novel spoiler design reduces fuel consumption

As if the drivers of mini vans and utility vehicles needed any more encouragement to drive fast between jobs, US researchers have designed a new rear spoiler for bluff-backed vehicles that can reduce drag and lift significantly. Writing in the International Journal of Vehicle Design, the team describes how the new spoiler could improve fuel consumption as well as vehicle handling.

Inchul Kim of Metacomp Technologies, in Agoura Hills, California, working with Xin Geng and Hualei Chen of the University of Michigan-Dearborn, explain that a traveling vehicle experiences two main aerodynamic forces.

The first is drag, or air resistance, and is in the opposite direction to the movement. The second force is lift, which is perpendicular to the drag and to the road.

The greater the drag, the more energy is needed to propel the vehicle and so the more fuel that it uses to cover the same ground at a given speed. Lift reduces the amount of friction between the tires and the road and so lowers traction. This also reduces efficiency as well as deleteriously affecting handling.

Kim and colleagues have used the principles of fluid dynamics, which were first developed in the nineteenth century, to create a computer model of a moving mini-van, on which they could test a spoiler design for the twenty-first century.

"The scientific principle and geometry of the new rear-spoiler are completely different from those of conventional spoilers that have been used so far," the researchers explain. Conventional spoilers resemble an inverted plane wing and generally working by increasing the downward force on the back of the vehicle as well as improving the flow of air across the bluff rear. The new rear spoiler resembles a wave in profile rather than a wing and acts like a diffuser when it is attached to the back of a vehicle. The air pressure on the back of a vehicle with the new spoiler is higher than that on the back of a vehicle without it, the researchers explain.

The team's calculations suggest that the spoiler can reduce drag by 5% and switch lift from positive to negative at 67 mph. Given that more than two-thirds of a vehicle's power is consumed overcoming drag at highway driving speeds, this could translate into a significant fuel saving of up to several miles per gallon. This could amount to a saving of several hundred dollars a year depending on mileage as well as a concomitant reduction in carbon emissions.

Equally, however, the increase in vehicle power could be exploited by an unscrupulous driver to push the mini-van to the speed limit.

"The new rear spoiler can be applied to other minivans, vans, sports-utility-vehicles and buses," the team says, "With the new spoiler attached, the vehicles having a bluff back would have not only a higher mileage but also better stability." The researchers are currently optimizing the design for further performance improvements.

Inchul Kim | EurekAlert!
Further information:
http://www.inderscience.com

More articles from Automotive Engineering:

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>