Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ShAPEing the future of magnesium car parts

23.08.2017

New approach makes lightest automotive metal more economic, useful

Magnesium -- the lightest of all structural metals -- has a lot going for it in the quest to make ever lighter cars and trucks that go farther on a tank of fuel or battery charge.


Spinning a magnesium alloy as it is pressed through a die to create tubes rods and channels is more energy efficient and actually improves the alloy's mechanical properties, making them more useful in structural components for vehicles.

Credit: PNNL

Magnesium is 75 percent lighter than steel, 33 percent lighter than aluminum and is the fourth most common element on earth behind iron, silicon and oxygen. But despite its light weight and natural abundance, auto makers have been stymied in their attempts to incorporate magnesium alloys into structural car parts. To provide the necessary strength has required the addition of costly, tongue-twisting rare elements such as dysprosium, praseodymium and ytterbium -- until now.

A new process developed at the Department of Energy's Pacific Northwest National Laboratory, should make it more feasible for the auto industry to incorporate magnesium alloys into structural components. The method has the potential to reduce cost by eliminating the need for rare-earth elements, while simultaneously improving the material's structural properties. It's a new twist on extrusion, in which the metal is forced through a tool to create a certain shape, kind of like dough pushed through a pasta maker results in different shapes.

Initial research, described recently in Materials Science and Engineering A, and Magnesium Technology, found the PNNL-developed process greatly improves the energy absorption of magnesium by creating novel microstructures which are not possible with traditional extrusion methods. It also improves a property called ductility -- which is how far the metal can be stretched before it breaks. These enhancements make magnesium easier to work with and more likely to be used in structural car parts. Currently, magnesium components account for only about 1 percent, or 33 pounds, of a typical car's weight according to a DOE report.

"Today, many vehicle manufacturers do not use magnesium in structural locations because of the two Ps; price and properties," said principal investigator and mechanical engineer Scott Whalen. "Right now, manufacturers opt for low-cost aluminum in components such as bumper beams and crush tips. Using our process, we have enhanced the mechanical properties of magnesium to the point where it can now be considered instead of aluminum for these applications -- without the added cost of rare-earth elements."

A new spin on things

Researchers theorized that spinning the magnesium alloy during the extrusion process would create just enough heat to soften the material so it could be easily pressed through a die to create tubes, rods and channels. Heat generated from mechanical friction deforming the metal, provides all of the heat necessary for the process, eliminating the need for power hungry resistance heaters used in traditional extrusion presses.

The shape of things to come

The PNNL team designed and commissioned an industrial version of their idea and received a one-of-a-kind, custom built Shear Assisted Processing and Extrusion machine -- coining the acronym for ShAPE™.

With it, they've successfully extruded very thin-walled round tubing, up to two inches in diameter, from magnesium-aluminum-zinc alloys AZ91 and ZK60A, improving their mechanical properties in the process. For example, room temperature ductility above 25 percent has been independently measured, which is a large improvement compared to typical extrusions.

"In the ShAPE™ process, we get highly refined microstructures within the metal and, in some cases, are even able to form nanostructured features," said Whalen. "The higher the rotations per minute, the smaller the grains become which makes the tubing stronger and more ductile or pliable. Additionally, we can control the orientation of the crystalline structures in the metal to improve the energy absorption of magnesium so it's equal to that of aluminum."

The push to save energy

The billets or chunks of bulk magnesium alloys flow through the die in a very soft state, thanks to the simultaneous linear and rotational forces of the ShAPE™ machine. This means only one tenth of the force is needed to push the material through a die compared to conventional extrusion.

This significant reduction in force would enable substantially smaller production machinery, thus lowering capital expenditures and operations costs for industry adopting this patent pending process. The force is so low, that the amount of electricity used to make a one-foot length of two-inch diameter tubing is about the same as it takes to run a residential kitchen oven for just 60 seconds.

Energy is saved since the heat generated at the billet/die interface is the only process heat required to soften the magnesium. "We don't need giant heaters surrounding the billets of magnesium like industrial extrusion machines, said Whalen. "We are heating -- with friction only -- right at the place that matters."

Magna-Cosma, a global auto industry parts supplier, is teaming with PNNL on this DOE funded research project to advance low cost magnesium parts and, as larger tubes are developed, will be testing them at one of their production facilities near Detroit.

PNNL's ShAPE™ technology is available for licensing and could help to make a dent in the auto industry's magnesium target, and slim down cars which currently weigh an average of 3,360 pounds.

###

Reference:

N. Overman, S. Whalen, M. Olszta, K. Kruska, J. Darsell, V. Joshi, X. Jiang, K. Mattlin, E. Stephens, T. Clark, S. Mathaudhu, "Homogenization and Texture Development in Rapidly Solidified AZ91E Consolidated by Shear Assisted Processing and Extrusion (ShAPE)," Materials Science and Engineering A, 701, 56-68, 2017, June 12, 2017, DOI: 10.1016/j.msea.2017.06.062.

S. Whalen, V. Joshi, N. Overman, D. Caldwell, C. Lavender, T. Skszek, "Scaled-Up Fabrication of Thin-Walled Magnesium ZK60 Tubing using Shear Assisted Processing and Extrusion (ShAPE)," Magnesium Technology, 315-321, Feb 16, 2017, DOI: 10.1007/978-3-319-52392-7_45.

Tags: Energy, Fundamental Science, Energy Efficiency, Materials

PNNL LogoInterdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed and operated by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, Instagram, LinkedIn and Twitter.

News Center
News Center Home
Secretary of Energy Perry Visit
Latest News
50th Anniversary Features
Director's Column
Social Media Directory
PNNL Leadership
Our Experts
Subscribe to Email News Service
RSS News Feed
Contacts for Reporters
Multimedia
Photos
PNNL B-Roll
PNNL Videos
PNNL's YouTube Channel
Additional Resources
Newsletters
Science Highlights
Publications
EurekAlert! National Lab News
Battelle News
PNNL Speakers Bureau

Media Contact

Susan Bauer
susan.bauer@pnnl.gov
509-372-6083

 @PNNLab

http://www.pnnl.gov/news 

Susan Bauer | EurekAlert!

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Life-long implants – vision and state of the art

Fraunhofer Institutes FEP and IWU have merged their expertise in order to advance a new generation of medical implants.

Implants are routinely employed in hospitals and dental practices daily. They are technologically mature and offer support for people in many different ways....

Im Focus: Green Light for New 3D Printing Process

Premier at formnext: Additive Manufacturing of Copper Materials Using Selective Laser Melting with Green Light

An innovation in the field of additive manufacturing will make its debut from November 14–17 at this year’s formnext in Frankfurt, Germany: the Fraunhofer...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Is the world on the brink of a computing revolution? – Quantum computing at the 5th HLF

31.08.2017 | Event News

Computers bridge the gap between theory and experiment in neuroscience

30.08.2017 | Event News

Save the Date! AKL’18 from May 2 - 4, 2018

29.08.2017 | Event News

 
Latest News

Chemo-boosting drug discovered for leukemia

01.09.2017 | Life Sciences

Biologists find new source for brain's development

01.09.2017 | Life Sciences

PolyU discovers a newly emerged superbug

01.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>