Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology helps scientists make bendy sensors for hydrogen vehicles

02.08.2007
In recent years, Americans have been intrigued by the promise of hydrogen-powered vehicles. But experts have judged that several technology problems must be resolved before they are more than a novelty.

Recently, scientists at the U.S. Department of Energy's Argonne National Laboratory have used their insights into nanomaterials to create bendy hydrogen sensors, which are at the heart of hydrogen fuel cells used in hydrogen vehicles.

In comparison to previously designed hydrogen sensors, which are rigid and use expensive, pure palladium, the new sensors are bendy and use single-walled carbon nanotubes (SWNTs) to improve efficiency and reduce cost. The development of these hydrogen sensors will help to ensure economical, environmental and societal safety, as the nation is realizing the potential for a more hydrogen-based economy.

Yugang Sun and H. Hau Wang, researchers in Argonne's Center for Nanoscale Materials and Materials Science Division, respectively, fabricated the new sensing devices using a two-step process separated by high and low temperatures. First, at around 900 degrees C, researchers grow SWNTs on a silicon substrate using chemical vapor deposition. Then, researchers transfer the SWNTs onto a plastic substrate at temperatures lower than 150 degrees C using a technique called dry transfer printing.

This precise process is what allows the film of nanotubes to form on the plastic, after which the palladium nanoparticles can be deposited on the SWNTs to make the sensors. The palladium nanoparticles play an important role in increasing the interaction between hydrogen and the SWNTs to enhance the change of resistance of the device when it is exposed to hydrogen molecules.

According to Sun, these sensors exhibit excellent sensing performance in terms of high sensitivity, fast response time and quick recovery, and the use of plastic sheets reduces their overall weight and increases their mechanical flexibility and shock resistance. The sensors are also able to be wrapped around curved surfaces, and this proves useful in many applications, notably in vehicles, aircraft and portable electronics.

“The leakage of hydrogen caused by tiny pinholes in the pipe of a space shuttle, for example, could not be easily detected by individual rigid detectors because the locations of pinholes are not predetermined,” said Sun. “However, laminating a dense array of flexible sensors on the surfaces of the pipe can detect any hydrogen leakage prior to diffusion to alert control units to take action.”

Flexible hydrogen sensors show a change of 75 percent in their resistance when exposed to hydrogen at a concentration of 0.05 percent in air. The devices can detect the presence of 1 percent hydrogen at room temperature in 3 seconds. Even after bending—with a bending radius of approximately 7.5 mm—and relaxing 2,000 times, the devices still perform with as much effectiveness.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or scarson@anl.gov) at Argonne

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>