Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research paves way for safer cars

02.09.2005


Anticollision systems will be the next step on the way to even safer cars. Researchers in Trondheim are helping the automotive industry to turn plans into reality.



Modern vehicles contain a large number of built-in computers. The project aims to develop software for use both in anticollision systems and in systems designed to prevent car from turning over. In both systems the vehicle itself takes command when it is physically impossible for the driver himself to react sufficiently rapidly and appropriately.

A number of modern cars are already fitted with anti-skid systems - technology that corrects the course of the car even before it loses its grip on the road. Some cars are also fitted with anti-rollover systems. These systems obtain their information from sensors that measure acceleration, how far the steering wheel has been turned and how fast each of the wheels is turning.


The scientists from Trondheim are developing a system that performs further, extremely rapid, processing on the data from these sensors.

The system being developed by the Norwegian scientists uses information from the sensors to calculate the forward and lateral speeds of the vehicle, as well as the extent and speed of any roll. These are measures that the car’s own computer needs to have if it is to avoid collisions and rollovers.

-There are two aspects that distinguish our solution from existing systems, says Lars Imsland from the SINTEF Group. -We have mathematically demonstrated that the estimated velocity is correct. At the same time, our solution does not require a great deal of computing power, which means that safer cars need not be too expensive.

The core of an anticollision system will consist of a camera and radar that warn the vehicle of imminent danger. Messages will be sent from several integrated computers to tell each of the wheels how much they need to brake. For these messages be correct, the car must know its own speeds both forwards and sideways, which is where the Norwegian contribution comes in.

-Daimler is so interested in the results of our project that we will soon have permission to install the first version of the system in Mercedes test vehicles, which should be very interesting”.

Imsland and four fellow scientists make up the SINTEF/NTNU team in an EU research project in which the Mercedes parent company Daimler Chrysler is the industrial partner

Lars Imsland | alfa
Further information:
http://www.sintef.no/default____490.aspx

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>