Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings could help hybrid, electric cars keep their cool

25.09.2009
Understanding precisely how fluid boils in tiny "microchannels" has led to formulas and models that will help engineers design systems to cool high-power electronics in electric and hybrid cars, aircraft, computers and other devices.

Allowing a liquid to boil in cooling systems dramatically increases how much heat can be removed, compared to simply heating a liquid to below its boiling point, said Suresh Garimella, the R. Eugene and Susie E. Goodson Professor of Mechanical Engineering at Purdue University.

However, boiling occurs differently in tiny channels than it does in ordinary size tubing used in conventional cooling systems.

"One big question has always been, where is the transition from macroscale boiling to microscale boiling?" said doctoral student Tannaz Harirchian. "How do you define a microchannel versus a macrochannel, and at what point do we need to apply different models to design systems? Now we have an answer."

Findings will be detailed in a research paper by Garimella and Harirchian and a keynote address to be presented by Garimella on Oct. 8 during the conference Thermal Investigations of ICs and Systems, or Therminic, from Oct. 7-9 in Leuven, Belgium. The researchers also have published several related papers in peer-reviewed journals.

Indiana's 21st Century Research and Technology Fund has provided $1.9 million to Purdue and Delphi Corp. in Kokomo, Ind., to help commercialize the advanced cooling system using microchannels for electronic components in hybrid and electric cars. The research also is funded by the Purdue-based National Science Foundation Cooling Technologies Research Center, a consortium of corporations, university and government laboratories working to overcome heat-transfer obstacles in developing new compact cooling technologies.

The new type of cooling system will be used to prevent overheating of devices called insulated gate bipolar transistors, high-power switching transistors used in hybrid and electric vehicles. The chips are required to drive electric motors, switching large amounts of power from the battery pack to electrical coils needed to accelerate a vehicle from zero to 60 mph in 10 seconds or less. The devices also are needed for "regenerative braking," in which the electric motors serve as generators to brake the vehicle, generating power to recharge the battery pack; to convert electrical current to run accessories in the vehicle; and to convert alternating current to direct current to charge the battery from a plug-in line.

The high-power devices produce about four times as much heat as a conventional computer chip.

The researchers studied a "dielectric liquid," a fluid that doesn't conduct electricity, which allows it to be used directly in circuits without causing electrical shorts.

"We have finally made sense of boiling in small-scale channels and now have a nice understanding of the physics," said Garimella, director of the NSF Cooling Technologies Research Center.

Researchers used special test chips fabricated by Delphi that are about a half-inch on each side and contain 25 temperature sensors.

"Right under each of these sensors is a little heater, so we can adjust the amount of heat we apply to specific locations on the chip and simulate what happens in a real chip," he said.

Too much heat hinders the performance of electronic chips or damages the tiny circuitry, especially in small "hot spots."

"In order to design these systems properly you need to be able to predict the heat-transfer rate and how much cooling you will get," he said.

Conventional chip-cooling methods use a small fan and finned metal plates called heat sinks, which are attached to computer chips to dissipate heat. Such air-cooled methods, however, do not remove enough heat for the advanced automotive electronics, especially because of hot air under a car's hood, Garimella said.

The microchannels are etched directly on top of the silicon chips. Because both the channels and the chip are made of silicon, there is no dramatic difference in expansion from heating, which allows chips to be stacked on top of each other with the cooling channels between each chip.

This stacking makes it possible to create more compact systems, since the chips do not have to be laid out horizontally on a circuit board as they ordinarily would.

"We can fit a lot more chips in much less real estate using this approach," Garimella said.

Unlike boiling liquid in larger cooling systems, spherical bubbles sometimes don't form in the smallest channels. Rather, one long continuous "liquid annulus," or oblong "slugs" of vapor in liquid form.

Harirchian developed formulas that allow engineers to tell when different kinds of flows occur and how to design the systems accordingly. The specific "flow regimes" -- whether the fluid is bubbly, annular or in slugs -- must be known before the proper formulas can be used to predict the performance of certain channel designs.

She also determined that it's not the width or the depth of the channels that most influence the boiling behavior but the cross sectional area of each channel, said Garimella, who began the microchannel research about 10 years ago.

"I am very proud of this work," Garimella said. "We have come a long way."

Researchers used a high-speed camera to capture the behavior of the circulating fluid, studying channels as small as 100 by 100 microns and as large as 100 microns deep by about 6 millimeters wide.

"We wanted to test a wide range of channel sizes," Harirchian said.

Delphi has taken the work further, creating prototypes and commercializing the cooling technology, said Delphi's Bruce Myers, principal technical fellow.

The researchers have created a database of movies accessible on the NSF center's Web site to demonstrate the boiling behavior in microchannels. They also have created a "complete test matrix" that enables engineers to determine how a particular system would perform given a range of channel dimensions, amount of heating and fluid flow.

"You can basically mix and match different design specifics and see the result," Garimella said.

The cooling systems also are being developed to cool the electronic controls in aircraft, military systems and for other applications.

"We hope to be able to use the new models to help us in designing vapor cycle system evaporators for aircraft thermal management," said Hal Strumpf, senior technology fellow and chief engineer for thermal systems at Honeywell International Inc. "These evaporators typically operate over the full range of flow regimes studied by Garimella's team, and each individual flow regime must be accurately modeled to predict evaporator performance."

Future research is concentrating on creating additional heat-transfer models for designing the cooling systems.

Some of the research was conducted at the Birck Nanotechnology Center in Purdue's Discovery Park.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Suresh Garimella, (765) 494-5621, sureshg@ecn.purdue.edu
Bruce Myers: Bruce.A.Myers@delphi.com
Hal Strumpf: hal.strumpf@honeywell.com
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Automotive Engineering:

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>