Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DuPont™ Zytel® nylon used for first polymer oil pan module adopted for serial-production cars

22.10.2008
For the first time in automotive history, an oil pan module made from a thermoplastic polymer is now used for serial-production cars.

Working in close cooperation with the automotive supplier Bruss and DuPont, Daimler has achieved a genuine breakthrough by developing a modular design for its new 4-cylinder diesel engines (model OM651), which consists of a die-cast aluminium upper shell and a multifunctional lower shell, made of DuPont™ Zytel® 70G35 HSLR.


Photo: DuPont
The oil pan for the new 4-cylinder diesel engines from Daimler is a new design, whereby, for the first time in a serial-production car, an engineering polymer plays a significant role: the 6-litre-capacity oil pan (below), made of DuPont™ Zytel® 70G35 HSLR, is screwed onto a die-cast aluminium frame. An oil deflector (top), which is also used to stiffen the module, is welded onto the pan.

The implemented design assures the part’s stiffness, and, at the same time, achieves a significant weight reduction of 1.1 kg versus an entirely aluminium design. Moreover, production efficiency is increased due to the high flow of the heat-stabilised, glass-fibre reinforced nylon, enabling long flow distances, short injection times and the reliable moulding of thin-walled sections. The material’s high compatibility with vibration welding further benefits productivity. The new oil pan design will be first used in the Mercedes-Benz C Class.

The rear section of the oil pan, which forms the sump for approximately 6 litres of oil, is very rigid due to its shape. The front section is of a flatter design due to chassis and steering gear space requirements. As a consequence, this section’s resistance to bending and stiffness is relatively low, requiring additional design measures to minimise warpage and deformation, and to eliminate the potential for leakages at the joint with the aluminium upper shell.

The solution was to create a sandwich design with a second injection-moulded part: A separately-produced oil deflector, welded onto the flat section of the pan, helps calm the oil, churned by the crankshaft and balance shaft, and directs it back into the oil pan. Between them, the pan and the deflector, as well as further refinements to the overall design, help ensure stability under all operating conditions. In the oil sump section, warm-embedded brass inserts accommodate the oil discharge screw and oil level switch. The high ribs in the sump act as baffles, helping to calm the oil and direct it towards the sump.

Before producing the first tool, Bruss requested technical support from DuPont in addition to their own, comprehensive simulation software. Finite element analysis (FEA) was used to refine the positioning of ribbing at the edge of the pan (outside of the area covered by the oil deflector) to significantly improve the overall stiffness of the critical, flat section, yet with minimal effect on the overall height of the design. Flow studies, also based on FEA modelling, were used by DuPont to gauge the impact of wall thickness, the number of gates, and their positioning, on weld line formation and warpage behaviour, and to optimise the respective processing parameters. Indeed, due to the high melt flow of Zytel® 70G35 HSLR, one single, central gate was enough to completely fill the mould cavity, while permitting short moulding cycles. In comparison to multi-point gating (which would potentially be necessary for other nylon grades), tool costs are reduced and process control is simplified, while the number of weld lines and the risk of air entrapments are also minimised.

Finally, at the DuPont European Technical Centre in Geneva, the structure’s properties were further analysed by simulating the combined engine and transmission being dropped forcefully by a fork-lift truck. Real-life testing at Bruss, using prototype components, confirmed the success of the adopted design: Even after 1000 hours of aging in hot oil at 150 °C, the pan is able to withstand these severe test conditions without incurring critical damage.

Overall, the use of thermoplastic polymers for oil pans creates a significant opportunity for further functional integration. Already, in its current form, the oil deflector has been integrated – used to encourage a calmer flow of oil back to the sump. Additional functions, envisaged for integration in future oil pan models, could include the oil pick-up pipe, oil level switch, oil filter, other oil return components or oil pumps.

The DuPont Engineering Polymers business manufactures and sells Crastin® PBT and Rynite® PET thermoplastic polyester resins, Delrin® acetal resins, Hytrel® thermoplastic polyester elastomers, DuPont™ ETPV engineering thermoplastic vulcanizates, Minlon® mineral-reinforced nylon resins, Thermx® PCT polycyclohexylene dimethylterephthalates, Tynex® nylon filaments, Vespel® parts and shapes, Zenite® liquid crystal polymers and Zytel® nylon resins and Zytel® HTN high-performance polyamides. These products serve global markets in the aerospace, appliance, automotive, consumer, electrical, electronic, healthcare, industrial, sporting goods and many other diversified industries.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

The DuPont Oval, DuPont™, The miracles of science™, and Zytel ® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

Horst Ulrich Reimer | Du Pont
Further information:
http://www.dupont.com

Further reports about: 70G35 DuPont Rynite® PET Zytel polymer oil pan module

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>