Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DuPont™ Zytel® nylon used for first polymer oil pan module adopted for serial-production cars

22.10.2008
For the first time in automotive history, an oil pan module made from a thermoplastic polymer is now used for serial-production cars.

Working in close cooperation with the automotive supplier Bruss and DuPont, Daimler has achieved a genuine breakthrough by developing a modular design for its new 4-cylinder diesel engines (model OM651), which consists of a die-cast aluminium upper shell and a multifunctional lower shell, made of DuPont™ Zytel® 70G35 HSLR.


Photo: DuPont
The oil pan for the new 4-cylinder diesel engines from Daimler is a new design, whereby, for the first time in a serial-production car, an engineering polymer plays a significant role: the 6-litre-capacity oil pan (below), made of DuPont™ Zytel® 70G35 HSLR, is screwed onto a die-cast aluminium frame. An oil deflector (top), which is also used to stiffen the module, is welded onto the pan.

The implemented design assures the part’s stiffness, and, at the same time, achieves a significant weight reduction of 1.1 kg versus an entirely aluminium design. Moreover, production efficiency is increased due to the high flow of the heat-stabilised, glass-fibre reinforced nylon, enabling long flow distances, short injection times and the reliable moulding of thin-walled sections. The material’s high compatibility with vibration welding further benefits productivity. The new oil pan design will be first used in the Mercedes-Benz C Class.

The rear section of the oil pan, which forms the sump for approximately 6 litres of oil, is very rigid due to its shape. The front section is of a flatter design due to chassis and steering gear space requirements. As a consequence, this section’s resistance to bending and stiffness is relatively low, requiring additional design measures to minimise warpage and deformation, and to eliminate the potential for leakages at the joint with the aluminium upper shell.

The solution was to create a sandwich design with a second injection-moulded part: A separately-produced oil deflector, welded onto the flat section of the pan, helps calm the oil, churned by the crankshaft and balance shaft, and directs it back into the oil pan. Between them, the pan and the deflector, as well as further refinements to the overall design, help ensure stability under all operating conditions. In the oil sump section, warm-embedded brass inserts accommodate the oil discharge screw and oil level switch. The high ribs in the sump act as baffles, helping to calm the oil and direct it towards the sump.

Before producing the first tool, Bruss requested technical support from DuPont in addition to their own, comprehensive simulation software. Finite element analysis (FEA) was used to refine the positioning of ribbing at the edge of the pan (outside of the area covered by the oil deflector) to significantly improve the overall stiffness of the critical, flat section, yet with minimal effect on the overall height of the design. Flow studies, also based on FEA modelling, were used by DuPont to gauge the impact of wall thickness, the number of gates, and their positioning, on weld line formation and warpage behaviour, and to optimise the respective processing parameters. Indeed, due to the high melt flow of Zytel® 70G35 HSLR, one single, central gate was enough to completely fill the mould cavity, while permitting short moulding cycles. In comparison to multi-point gating (which would potentially be necessary for other nylon grades), tool costs are reduced and process control is simplified, while the number of weld lines and the risk of air entrapments are also minimised.

Finally, at the DuPont European Technical Centre in Geneva, the structure’s properties were further analysed by simulating the combined engine and transmission being dropped forcefully by a fork-lift truck. Real-life testing at Bruss, using prototype components, confirmed the success of the adopted design: Even after 1000 hours of aging in hot oil at 150 °C, the pan is able to withstand these severe test conditions without incurring critical damage.

Overall, the use of thermoplastic polymers for oil pans creates a significant opportunity for further functional integration. Already, in its current form, the oil deflector has been integrated – used to encourage a calmer flow of oil back to the sump. Additional functions, envisaged for integration in future oil pan models, could include the oil pick-up pipe, oil level switch, oil filter, other oil return components or oil pumps.

The DuPont Engineering Polymers business manufactures and sells Crastin® PBT and Rynite® PET thermoplastic polyester resins, Delrin® acetal resins, Hytrel® thermoplastic polyester elastomers, DuPont™ ETPV engineering thermoplastic vulcanizates, Minlon® mineral-reinforced nylon resins, Thermx® PCT polycyclohexylene dimethylterephthalates, Tynex® nylon filaments, Vespel® parts and shapes, Zenite® liquid crystal polymers and Zytel® nylon resins and Zytel® HTN high-performance polyamides. These products serve global markets in the aerospace, appliance, automotive, consumer, electrical, electronic, healthcare, industrial, sporting goods and many other diversified industries.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

The DuPont Oval, DuPont™, The miracles of science™, and Zytel ® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

Horst Ulrich Reimer | Du Pont
Further information:
http://www.dupont.com

Further reports about: 70G35 DuPont Rynite® PET Zytel polymer oil pan module

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>