Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drive System Saves Space and Weight in Electric Cars

20.10.2014

Siemens has developed a solution for integrating an electric car's motor and inverter in a single housing. Until now, the motor and the inverter, which converts the battery's direct current into alternating current for the motor, were two separate components.

The new integrated drive unit saves space, reduces weight, and cuts costs. The solution's key feature is the use of a common cooling system for both components. This ensures that the inverter's power electronics don't get too hot despite their proximity to the electric motor, and so prevents any reduction in output or service life.


Because range is a decisive criterion for purchasing an electric car, automakers are always striving to reduce vehicle weight. This was also the aim of the Siemens engineers. Their idea was to integrate the inverter into the motor, as this would reduce weight because only a single housing would be needed.

In addition, it would create six to seven liters of additional installation space, which could be used for a charging unit, for example. Integration would also eliminate the costs of wiring the motor to the inverter and fewer assembly steps would be needed to produce the vehicle.

Cooling is key

Siemens developed the integrated drive unit Sivetec MSA 3300 on the basis of a series electric motor. The engineers adapted the housing in such a way that the inverter could be integrated into the motor. One problem they faced was the heat generated by the electric motor.

At high temperatures, the output of the IGBT modules - the high-performance semiconductors that convert the battery's current into alternating current - has to be limited. For this reason, inverters in electric cars. always have their own water cooling system.

Another component of the overall solution is the very robust power modules featuring SkiN technology. SkiN is a bonding technology that connects the surface of the semiconductor chip without requiring bonding wire. When the thermal load fluctuates, the electrical contact between the chip and the bonding wire is a weak point of semiconductor components.

A key feature of the integrated drive unit was therefore the creation of a special cooling water system around the motor and inverter. The coolest water first flows around very thermally sensitive components such as the IGBT modules and the intermediate circuit capacitor, after which it is led into the motor's cooling jacket. The water flow system is designed in such a way that a kind of water screen is created between the inverter electronics and the motor. As a result, it thermally isolates the two units from one another.

The concept's feasibility has already been demonstrated in a lab under the typical load curves and operating conditions of an electric motor in an automobile. The industry has expressed considerable interest in Sivetec MSA 3300, and the system was recently nominated for the eCarTec Award 2014, which is the Bavarian State Award for Electric and Hybrid Mobility.

Press Picture: http://www.siemens.com/press/en/presspicture/innovationnews/2014/im2014100062coe...

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>