Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blind can take wheel with vehicle designed by university engineering design team

20.07.2009
A student team in the Virginia Tech College of Engineering is providing the blind with an opportunity many never thought possible: The opportunity to drive.

A retrofitted four-wheel dirt buggy developed by the Blind Driver Challenge team from Virginia Tech's Robotics and Mechanisms Laboratory uses laser range finders, an instant voice command interface and a host of other innovative, cutting-edge technology to guide blind drivers as they steer, brake, and accelerate.


Although in the early testing stage, the National Federation of the Blind -- which spurred the project -- considers the vehicle a major breakthrough for independent living of the visually impaired.

"It was great!" said Wes Majerus, of Baltimore, the first blind person to drive the buggy on a closed course at the Virginia Tech campus this summer. Majerus is an access technology specialist with the National Federation of the Blind's Jernigan Institute in Baltimore, a research and training institute dedicated to developing technologies and services to help the blind achieve independence.

Majerus called his drive a liberating experience, adding that he drove before on Nebraska farm roads with his father as a guide in the passenger seat.

Sitting inside the vehicle, a blind driver can turn the steering wheel, stop and accelerate by following data from a computing unit that uses sensory information from the laser range finder serving as the 'eyes' of the driver, in addition to a combination of voice commands and a vibrating vest as guides. A member of the Virginia Tech student team sat next to Majerus in the passenger seat to monitor the system's software operations.

"It's a great first step," Majerus added. "As far as the differences between human instructions and those given by the voice in the Blind Driver Challenge car, the car's instructions are very precise. You use the technology to act on the environment -- the driving course -- in a very orderly manner. In some cases, the human passenger will be vague, "turn left" -- does that mean just a small turn to the left, or are we going for large amounts of turn?"

Also driving the vehicle was Mark Riccobono, also of Baltimore, the executive director of the Jernigan Institute, who also is blind. He called his test drive historic. "This is sort of our going to the moon project," he said

In 2004 Jernigan Institute challenged university research teams to develop a vehicle that would one day allow the blind to drive. Virginia Tech was the only university in the nation to accept the nonprofit's call two years later, said Dennis Hong, director of the Robotics and Mechanisms Laboratory, part of the Virginia Tech mechanical engineering department. The National Federation of the Blind provided a $3,000 grant to launch the project.

"I thought it would be a very rewarding project, helping the blind," said Hong, the current faculty adviser on the project. "We are not only excited about the vehicle itself, but more than that, we are excited about the potential of the many spin-off technologies from this project that can be used for helping the blind in so many ways."

The team will bring the Blind Driver Challenge vehicle to the National Federation of the Blind's Youth Slam summer camp event held July 26 through Aug. 1 in College Park, Md. There, the team hopes to have teenagers who would be obtaining their driver's licenses, but cannot because of their blindness, drive the buggy.

Youth participants also are expected to remote control drive miniature cars. Additionally, the car is expected to ride in a National Federation of the Blind-sponsored parade in Washington D.C.

"I most look forward to learning as much as I can from these bright young students," said Greg Jannaman, who led the Virginia Tech student team in his senior year and graduated in May with a bachelor's degree in mechanical engineering. "Blind students from across the nation apply to be selected to attend this summer camp. While we are there to provide an educational experience for them, I can only imagine the invaluable feedback and fresh new ideas that they will provide in return."

Jannaman is excited about the vehicle's success. "There wasn't a moment's hesitation with any of our blind drivers, whereas blind-folded sighted drivers weren't as quick to let go of their preconceptions," said Jannaman of Hendersonville, Tenn. "The blind drivers actually performed better than their sighted counterparts. An overwhelming sense of accomplishment overcame me as I simply rode along while Wes and Mark successfully navigated the driving course without my assistance."

Early models of the Blind Driver Challenge vehicle relied more on technologies for fully autonomous vehicles, previously developed by Virginia Tech mechanical engineering students as part of the DARPA Urban Challenge (www.vt.edu/spotlight/achievement/2007-10-29_victortango/2007-10-29-victortango.html). The student team redesigned the vehicle so that the blind motorist has complete control of the driving process, as any sighted driver would.

This change in approach led to new challenges, including how to effectively convey the high bandwidth of information from the laser sensors scanning the vehicle's surrounding environment to the driver fast enough and accurate enough to allow safe driving. As a result, the team developed non-visual interface technologies, including a vibrating vest for feedback on speed, a click counter steering wheel with audio cues, spoken commands for directional feedback, and a unique tactile map interface that utilizes compressed air to provide information about the road and obstacles surrounding the vehicle.

Riccobono knows of mock ups and non-working "blind driver car" set-ups from the past, but says this is the first working vehicle to put the blind and visually impaired in control of the steering wheel. "Blind people have brains, the capacity to make decisions," he said. "Blind people want to live independent lives, why would they not want to drive?"

Even once the technology is perfected, laws now barring the blind from driving and public perception must be changed, Riccobono said. "This is the piece that we know will be the most difficult," said Riccobono, adding that the car must be near-perfected before the National Federation of the Blind can truly push the car to law-makers and the general public. He said this effort will take millions of dollars in development.

The 2009-10 student team already is planning major changes to the technology, including replacing the dirt buggy vehicle with a fully electric car commonly used by traffic officers in downtown city centers. The all-electric vehicle would reduce the vibration which can cause problems to the laser sensor, and it will provide clean electric power for the computing units and that is better for the environment.

Hong is a National Science Foundation CAREER Award recipient. He received his bachelor's degree in mechanical engineering from the University of Wisconsin-Madison in 1994, and his master's and doctoral degrees in mechanical engineering from Purdue University in 1999 and 2002, respectively.

Steven Mackay | EurekAlert!
Further information:
http://www.vt.edu
http://www.me.vt.edu/blinddriver/

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>