Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ORNL roof system means savings for homeowners

29.08.2007
Homeowners could see their summer utility bills fall by 8 percent or more with a new roof and attic system being developed at the Department of Energy's Oak Ridge National Laboratory.

From an energy efficiency perspective, roof technology has not progressed substantially in hundreds of years, but that is changing with the use of active thermal mass components, reflective pigments and coatings, subventing, radiant barriers and other novel techniques being tested by a team led by Bill Miller and Jan Kosny of ORNL's Building Envelopes group. Their prototype roof and attic system works by reducing attic temperatures by about 22 degrees Fahrenheit during a typical summer afternoon and decreasing the amount of heat that gets transferred through the attic floor to the living space.

At the heart of new roof system is a proprietary inorganic phase change material sandwiched between two reflective surfaces made of aluminum foil. This material is installed as a dynamic thermal barrier between the roof and attic area, creating separate air channels between roof rafters. The configuration is compatible with traditional wood and steel framing technologies. Moreover, the new phase change material overcomes problems that have plagued phase change materials for the past 40 years.

"In the 1970s and 1980s the housing industry made several moderately successful attempts to use phase change materials," Kosny said. "While these materials enhanced building energy performance, they were in many cases chemically unstable, were subject to corrosion or other durability problems and suffered from loss of phase change capability."

Another shortcoming of some previous phase change materials was their susceptibility to fire. Fire is not a problem with the ORNL material, according to Kosny, who noted that ORNL researchers are working with leading manufacturers of phase change material on the development of non-flammable organic material.

In tests at ORNL, phase change materials perform like conventional materials by absorbing heat as the temperature increases. However, as the material melts it continues to absorb large amounts of heat without a significant increase in temperature. Then, as night falls and the ambient temperature around the liquid phase change material decreases, it solidifies again and releases the stored heat to the night sky, Miller said.

With an outside temperature of 92 degrees Fahrenheit, tests at ORNL's Buildings Technology Center show temperatures of conventional attics at 127 degrees Fahrenheit vs. attic temperatures of 105 degrees with the Dynamic Attic Heat Exhaust System. Kosny and Miller filed a patent last year for this technology.

"The next generation roof will consist of infrared reflective materials that are dark in color yet reflect light as if they were white," Miller said. "In addition, radiant barriers and phase change materials will be integrated into a dynamic attic system that reduces utility bills for homeowners. The conservation strategies contribute on a much grander scale by lowering peak demand on utilities, reducing carbon emissions and, ultimately, they could lead to cleaner air."

If just half of the homeowners in the U.S. made sure they had R30 attic floor insulation and used this roof and attic system, the nation could reduce its Btu (British Thermal Unit) demand by about 100 trillion Btu.

This research is funded by the DOE Office of Energy Efficiency and Renewable Energy's Building Technologies program. UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>