Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bridge design improves earthquake resistance, reduces damage and speeds construction

02.07.2014

Researchers have developed a new design for the framework of columns and beams that support bridges, called "bents," to improve performance for better resistance to earthquakes, less damage and faster on-site construction.

The faster construction is achieved by pre-fabricating the columns and beams off-site and shipping them to the site, where they are erected and connected quickly. 


This graphic illustrates a new design for the framework of columns and beams that support bridges, called "bents," to improve performance for better resistance to earthquakes, less damage and faster on-site construction. The faster construction is achieved by prefabricating the columns and beams off site and later erecting and connecting them quickly at the construction site. (University of Washington, Seattle/NEES photo)

"The design of reinforced concrete bridges in seismic regions has changed little since the mid-1970s," said John Stanton, a professor in the Department of Civil and Environmental Engineering at the University of Washington, Seattle, who developed the concept underlying the new design.

The team members include professor Marc Eberhard and graduate research assistants Travis Thonstad and Olafur Haraldsson from the University of Washington; and professor David Sanders and graduate research assistant Islam Mantawy from the University of Nevada, Reno.

Research findings are included in a paper being presented during Quake Summit 2014, the annual meeting for the National Science Foundation's George E. Brown, Jr. Network for Earthquake Engineering Simulation, a shared network of laboratories based at Purdue University. This year's summit is part of the 10th U.S. National Conference on Earthquake Engineering on July 21-25 in Anchorage, Alaska.

Until now the majority of bridge bents have been made using concrete that is cast in place, but that approach means time is needed for the concrete to gain strength before the next piece can be added. Pre-fabricating the pieces ahead of time eliminates this requirement, speeding on-site construction and reducing traffic delays. 

"However, pre-fabricating means the pieces need to be connected on-site, and therein lies a major difficulty," Stanton said. "It is hard enough to design connections that can survive earthquake shaking, or to design them so that they can be easily assembled, but to do both at once is a real challenge."

Moreover, the researchers have achieved this goal using only common construction materials, which should smooth the way for owners and contractors to accept the new approach, he said.

An important feature of the new system is that the columns are pre-tensioned.

"A good analogy is to think of a series of a child's wooden building blocks, each with a hole through it," Stanton said. "Stack them on top of one another, put a rubber band through the central hole, stretch it tight and anchor it at each end. The rubber band keeps the blocks squeezed together.  Now stand the assembly of blocks up on its end and you have a pre-tensioned column. If the bottom of the column is attached to a foundation block, you can push the top sideways, as would an earthquake, but the rubber band just snaps the column back upright when you let go."

This "re-centering" action is important because it ensures that, directly after an earthquake, the bridge columns are vertical and not leaning over at an angle. This means that the bridge can be used by emergency vehicles in the critical moments immediately following the earthquake.    

"Of course, the real bridge columns do not contain rubber bands, but very high-strength steel cables are used to achieve the same behavior," Stanton said.

To keep the site operations as simple as possible, those cables are stressed and embedded in the concrete at the plant where the columns are fabricated. The columns also contain some conventional rebar, which is also installed in the fabrication plant.

The technology was pioneered in the building industry in the 1990s but is now being adapted for use with bridges.

When the columns rock during an earthquake, they experience high local stresses at the points of contact, and without special measures the concrete there would crush. To counteract this possibility, the researchers protected the ends of the columns with short steel tubes, or "jackets," that confine the concrete, not unlike the hoops of a barrel, or the steel cap that ranchers use to protect the top of a fence-post while driving it into the ground.

"Cyclic tests of the critical connections have demonstrated that the system can deform during strong earthquakes and then bounce back to vertical with minimal damage," Stanton said.

Those tests were conducted on individual connections by graduate assistants Olafur Haraldsson, Jeffrey Schaefer and Bryan Kennedy. In July, the team will test a complete bridge built with the system. The test will be conducted at 25 percent of full-scale on the earthquake-shaking tables at a facility at the University of Nevada, Reno. The facility is part of NEES.

Travis Thonstad led the design and built the components for that test. The column and cap beam components were then shipped to the University of Nevada, Reno, where Islam Mantawy is leading the construction of the bridge. The team from Washington and Nevada will be processing the data from this project, and it will be archived and made available to the public through NEES. The team from Washington and Nevada will process the data from the project, which will be archived and made available to the public through the NEES Project Warehouse data repository at http://www.nees.org.

The Quake Summit paper was authored jointly by the team. The research was supported by the NSF, the Pacific Earthquake Engineering Research (PEER) Center and the Valle Foundation of the University of Washington.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources:  John Stanton, 206-543-6057, stanton@uw.edu

Marc Eberhard, 206-543-4815, eberhard@u.washington.edu

David Sanders, 775-784-4288, sanders@unr.edu

ABSTRACT

A Pre-tensioned, Rocking Bridge Bent for ABC in Seismic Regions   

John Stanton1, Marc Eberhard1, David Sanders2, Travis Thonstad3, Jeffrey Schaefer3, Bryan Kennedy3, Olafur Haraldsson3, and Islam Mantawy4  

1  Professor, Dept. of Civil Eng., University of Washington, Seattle, WA 98195

2  Professor, Dept. of Civil Eng., University of Nevada, Reno, NV 89557

3  Graduate Research Assistant, Dept. of Civil Eng., University of WA, Seattle

4  Graduate Research Assistant, Dept. of Civil Eng., University of Nevada, Reno

A new, rocking, pre-tensioned concrete bridge bent system has been developed that reduces on-site construction time by precasting the beams and columns, minimizes post-earthquake residual displacements by the use of locally unbonded, pre-tensioned strands in the columns, and reduces earthquake damage by means of rocking connections at the ends of the columns.  Cyclic tests of the critical connections have demonstrated that the system can deform to drift ratios of around 6% with minimal damage and negligible residual displacements. Shaking table tests of a 25% scale, two-span bridge at the University of Nevada, Reno will be used to evaluate the dynamic performance of the system.

Emil Venere | Eurek Alert!
Further information:
http://www.purdue.edu/newsroom/releases/2014/Q2/new-bridge-design-improves-earthquake-resistance,-reduces-damage-and-speeds-construction.html

Further reports about: Civil Earthquake Reno blocks connections construction damage earthquake resistance rubber

More articles from Architecture and Construction:

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Working comfortably in summer heat
02.06.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>