Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CFD has it all wrapped up

03.03.2014

Wrapped in a tightly meshed grid, the volunteer is enveloped by lots of little cells that tuck snugly around the body, filling all the available space.

Scientists from the Fraunhofer Institute for Building Physics IBP want to understand every little detail, and so have every millimeter covered. Because they know their test person’s exact measurements and understand how these change in different positions.


This diagram clearly shows just how tightly the grid enmeshes the virtual test subjects, or mannequins.

Fraunhofer IBP


CFD simulations require all boundary conditions to be known: the above diagram shows the factors that influence indoor climate in a passenger cabin.

Fraunhofer IBP

The meshed grid in question consists of a million or more cells and took the scientists several weeks to knit around their test subject. How fortunate, then, that in this case the volunteers aren’t real people, but characters in a computational fluid dynamics (CFD) simulation. CFD is used whenever scientists and engineers need to understand and predict the flow behavior of fluids such as air, water and oil. It’s a technique that Sebastian Stratbücker, head of the Simulation group, and his team mainly use when investigating issues relating to indoor climate. In most cases, this involves looking at air and the way it behaves in enclosed spaces. “Our simulations help to optimize the indoor climate for people and technical equipment,” explains Stratbücker. “Evaluation parameters include thermal comfort, energy efficiency, humidity, CO2 and pollutant concentration.”

But what do we need CFD simulations for anyway? “In most cases, taking a trial and error approach just isn’t practicable,” explains Stratbücker. “Even in terms of setting up the test, it would often prove far too expensive and labor-intensive.”

... more about:
»Building »CFD »IBP »conditions »heating »temperature »ventilation

Say you want to construct a new building, for example. The planning phase is all-important, and requires those involved to make a lot of important decisions before work has even begun, such as which ventilation system to install. Planners need solutions that will help them make such choices in advance; they have to be able to determine whether the system they intend to install is up to the job while also being efficient and ideally cost-effective at the same time.

CFD offers just such assistance, and enables planners to measure and evaluate rooms in great detail with the help of the grid described above. This system allows them to call up the indoor climate conditions for any point in the room at any given point in time, highlighting factors ranging from air velocity, temperature and pressure through air exchange rate and the concentrations of specific substances in the air. 

Of course, the boundary conditions for the simulation must be clearly defined; these parameters are often determined by measurements taken in laboratories or in field tests. Fraunhofer IBP scientists also use their own specially developed DressMAN 2.0 measuring system for this purpose. In other cases, they rely on their own databases of building physics reference data, types of construction, building services, and usage profiles. They draw additional data from their customers’ plans. All this allows the computer program to evaluate factors such as the geometry of the space in question, including any air inlets and outlets, exchanges of air between the outside and inside environments, the heating and cooling capacity of the chosen system, the periods when the space is in use, the materials used in its construction, and many more features.

Even the physical properties of the windows or the type of clothing worn by the people using the building can be taken into account if required. “It goes without saying that CFD is also quite an intensive process, but one that’s worth it compared to the trial-and-error principle, as it means we avoid making mistakes from the outset,” Stratbücker explains, adding: “Simulating different scenarios lets us work up a range of proposed solutions and analyze them, so we end up with the optimum system design.”

Of course, this does not just apply to the planning phase of new constructions. Fraunhofer researchers use CFD to identify and develop solutions to problems that arise in existing buildings, too.


Possible applications for CFD also extend beyond the realm of buildings; Stratbücker and his team use this form of flow simulation to analyze and evaluate aircraft and motor vehicle interiors as well. Much of the validation testing for simulations is conducted at the IBP’s Flight Test Facility FTF, a one-of-a-kind test site in Holzkirchen south of Munich. In return, the scientists applied CFD beyond Fraunhofer IBP’s usual setting of air flow simulations when they optimized numerous system components for the FTF’s new Ground Thermal Test Bench so it could be brought into service last year.

In order for the aircraft calorimeter (ACC) at the FTF to simulate the most extreme conditions such as thermal shock (rapid changes of temperature), the cooling and heating functions along the aircraft’s outer skin had to work without a hitch. The Simulation group used CFD to optimize the Ground Thermal Test Bench’s coolant tank and the recirculation of the cooling agent inside it in such a way that the liquid is cooled to exactly the required temperature before being fed back to the aircraft.

This demonstrates how flow simulation can benefit individual components, such as those in a ventilation system, as well as large systems, such as entire rooms. “We use CFD in any situation where we’re not certain if the system works in the way we think it should,” says Stratbücker. “But we also use other methods, depending on the issue we’re addressing.” For instance, particle image velocimetry (PIV) can be used to measure and visualize flow field velocities – which means it can help to verify CFD results at critical points.

IBP scientists developed VEPZO, the VElocity Propagating ZOnal Model, in order to be able to quickly evaluate indoor air flow patterns and temperature distributions. The model can evaluate ventilation concepts and visualize them at a local resolution. “We use it whenever air node models are too basic a solution and CFD too sophisticated. With VEPZO, we can demonstrate fairly quickly the effect that factors can have, such as planting concepts or a heating system that adjusts according to whether a room is empty or occupied.”

Stratbücker and his colleagues are already looking forward to using CFD in some exciting new projects. For instance, heating the interiors of old church buildings is often a big problem. Heating systems are generally used only on a temporary basis, and the heating effect is instantly lost to the large spaces. “If the system were tailored to requirements and designed according to users’ local needs, then a large church could be heated in a user-friendly manner without excessive heat loss. CFD can simulate how this might work in practice.”

Weitere Informationen:

http://www.ibp.fraunhofer.de/en/Press/Research_in_focus.html

| Fraunhofer-Institut

Further reports about: Building CFD IBP conditions heating temperature ventilation

More articles from Architecture and Construction:

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

nachricht Magnetic liquids improve energy efficiency of buildings
16.01.2018 | Friedrich-Schiller-Universität Jena

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>