Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bridges in Trouble: Diagnosing Their Ills from a Distance

09.04.2010
Tess Ahlborn believes we could learn a lot from bridges, if only we could hear what they have to say. Now, she aims to find the best ways to listen in.

Ahlborn, a professor of civil and environmental engineering, leads a team of two dozen Michigan Technological University researchers working to identify the best remote-sensing technologies for monitoring the health of bridges.

The goal of the $2.8 million project goes beyond preventing disasters like the one that befell Minneapolis’s I-35W bridge in August 2007. “We hope this will help decision makers make informed choices about what bridge should be repaired next.”

And there are so many choices. “Our bridges are in rotten condition,” she says. “The US got a grade of C overall on the condition of its bridges, and Michigan got a whopping D.”

Ahlborn’s project is funded by a $1.4 million cooperative agreement from the US Department of Transportation’s Research and Innovative Technology Administration, in-kind services from the Michigan Department of Transportation and the nonprofit Center for Automotive Research, and additional support from Michigan Tech. Researchers on the multidisciplinary project are drawn from the on-campus Michigan Tech Transportation Institute and the Michigan Tech Research Institute in Ann Arbor.

As with people, bridges start getting sick long before they develop obvious symptoms. “Lots of things are involved in a bridge’s condition,” says Ahlborn. Water can seep into tiny fissures and form cracks as it freezes and thaws. Forces ranging from heavy traffic to tiny earthquakes can take their toll. And with on-site inspections occurring only once every two years, monitoring a bridge’s condition has been a difficult challenge. But technologies developed in recent years could very well make the inspector’s job easier.

“We can use remote sensing to do everything from diagnosing illnesses to finding wetlands,” Ahlborn says. “We ought to be able to use it to find out what’s wrong with bridges.”

The aim of the research is not to develop new remote sensing technologies, she stresses. “We want to identify existing technologies that show promise.”

Those technologies also have to be affordable, since Ahlborn hopes to apply them to bridges both large and small. “We might find something that works great and costs $2 million,” she says. “That would only be viable on something like the Mackinac Bridge or the Golden Gate.

In addition to monitoring and assessing bridge conditions, the technology must also make information easily available for those responsible for bridge maintenance and repair. “This isn’t meant to eliminate bridge inspectors,” Ahlborn says. “It should be a tool for them that allows them to do their jobs better.”

Coprincipal investigators on the project from the Michigan Tech Research Institute are Codirector Robert Shuchman, Senior Research Scientist/Engineer Joe Burns, and Research Scientist Colin Brooks. Coprincipal investigators from the Michigan Tech Transportation Institute are Director Larry Sutter and Devin Harris, an assistant professor of civil and environmental engineering.

More information can be found at www.mtti.mtu.edu/bridgecondition.

Tess Ahlborn, tess@mtu.edu, 906-487-2625

Marcia Goodrich | Newswise Science News
Further information:
http://www.mtu.edu
http://www.mtti.mtu.edu/bridgecondition

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>