Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Wild Canola Plants With Modified Genes Found in United States

09.08.2010
Scientists at the University of Arkansas and their colleagues have found populations of wild plants with genes from genetically modified canola in the United States.

Globally, canola can interbreed with 40 different weed species, and 25 percent of those weeds can be found in the United States. These findings raise questions about the regulation of herbicide resistant weeds and about how these plants might compete with others in the wild.

Graduate student Meredith Schafer will present the group’s findings Friday, Aug. 6, at the Ecological Society of America meeting in Pittsburgh, Pa.

“We really don’t know what the consequences of the gene escape are,” said Schafer. “We don’t know what these plants are going to do.”

The research originated when Schafer and Cynthia Sagers, professor of biological sciences at the University of Arkansas, spotted some pretty yellow flowers in a ditch near Warehouse Foods in Langdon, N.D. As part of another research project, they had some portable strips that test for genetically modified proteins found in canola – proteins that convey herbicide resistance to crop plants. The strips work much like those in a pregnancy test; Schafer and Sagers crushed plant leaves in water and added the test strip, which would develop one line if it tested negative for the modified gene and two lines if it tested positive for a modified protein. Their test strips could detect the protein that conveys Roundup resistance; they also could detect the protein that conveys resistance to Liberty Link, another herbicide used on canola.

Schafer and Sagers determined at once that the parking lot weeds contained transgenic genes.

“Immediately we knew we needed to investigate it further,” Sagers said.

They filled a car with test strips and set out on a road trip in a red Ford Explorer, traveling on highways east and west across North Dakota, stopping every five miles on the highways to look for roadside weeds. They counted canola plants in a 50-meter transect, photographed the locations, took GPS statistics, took a plant sample, and tested the samples in the front seat. They then collected and pressed the sampled plant and drove to the next location.

“We traveled over 3,000 miles to complete the sampling,” Schafer said. Some of the sites had densely packed plants, with 1,000 specimens in a 50-meter space. “They spray these roadsides with herbicides, and canola is the only thing still growing.”

They found wild canola in about 46 percent of the sites along the highway, either growing on the side of the road or in cracks in the highway. About 83 percent of the weedy canola they tested contained transgenic material — that is, they contained herbicide resistance genes from genetically modified canola. Further, some of the plants contained resistance to both herbicides – a combination of transgenic traits that had not been developed in canola crops.

“That’s not commercially available. That has to be happening in the wild,” Schafer said. “That leads us to believe that these wild populations have become established populations. Technically, these plants are not supposed to be able to compete in the wild.”

Current farming practices may quickly make the problem worse. Each year tens of thousands of acres of canola go un-harvested in the field. As a consequence, an enormous reservoir of seed is created, which can then spread into wild populations.

“Once this happens, it would be difficult to get rid of these weeds using current herbicides,” Sagers said.

While the problem looms large in North Dakota, Sagers says the message is a global one. The world recently hit a milestone, where more than 50 percent of the earth is covered in crops used for food or forage. Domesticated plants have wild cousins that often are considered weeds, and sometimes these plants can still cross breed, creating a high potential for herbicide and pesticide resistance to show up where it isn’t wanted.

“Things can escape from cultivation, and we need to be careful about what we stick into plants,” Sagers said.

In addition to Schafer and Sagers, researchers on the project included postdoctoral researchers Jason P. Londo at the University of Arkansas; Andrew X. Ross and Steven E. Travers from North Dakota State University; Peter K. van de Water of California State University in Fresno, Calif.; and Connie A. Burdick and E. Henry Lee of the U.S. Environmental Protection Agency.

Barbara Jaquish | Newswise Science News
Further information:
http://www.uark.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>