Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Wild Canola Plants With Modified Genes Found in United States

09.08.2010
Scientists at the University of Arkansas and their colleagues have found populations of wild plants with genes from genetically modified canola in the United States.

Globally, canola can interbreed with 40 different weed species, and 25 percent of those weeds can be found in the United States. These findings raise questions about the regulation of herbicide resistant weeds and about how these plants might compete with others in the wild.

Graduate student Meredith Schafer will present the group’s findings Friday, Aug. 6, at the Ecological Society of America meeting in Pittsburgh, Pa.

“We really don’t know what the consequences of the gene escape are,” said Schafer. “We don’t know what these plants are going to do.”

The research originated when Schafer and Cynthia Sagers, professor of biological sciences at the University of Arkansas, spotted some pretty yellow flowers in a ditch near Warehouse Foods in Langdon, N.D. As part of another research project, they had some portable strips that test for genetically modified proteins found in canola – proteins that convey herbicide resistance to crop plants. The strips work much like those in a pregnancy test; Schafer and Sagers crushed plant leaves in water and added the test strip, which would develop one line if it tested negative for the modified gene and two lines if it tested positive for a modified protein. Their test strips could detect the protein that conveys Roundup resistance; they also could detect the protein that conveys resistance to Liberty Link, another herbicide used on canola.

Schafer and Sagers determined at once that the parking lot weeds contained transgenic genes.

“Immediately we knew we needed to investigate it further,” Sagers said.

They filled a car with test strips and set out on a road trip in a red Ford Explorer, traveling on highways east and west across North Dakota, stopping every five miles on the highways to look for roadside weeds. They counted canola plants in a 50-meter transect, photographed the locations, took GPS statistics, took a plant sample, and tested the samples in the front seat. They then collected and pressed the sampled plant and drove to the next location.

“We traveled over 3,000 miles to complete the sampling,” Schafer said. Some of the sites had densely packed plants, with 1,000 specimens in a 50-meter space. “They spray these roadsides with herbicides, and canola is the only thing still growing.”

They found wild canola in about 46 percent of the sites along the highway, either growing on the side of the road or in cracks in the highway. About 83 percent of the weedy canola they tested contained transgenic material — that is, they contained herbicide resistance genes from genetically modified canola. Further, some of the plants contained resistance to both herbicides – a combination of transgenic traits that had not been developed in canola crops.

“That’s not commercially available. That has to be happening in the wild,” Schafer said. “That leads us to believe that these wild populations have become established populations. Technically, these plants are not supposed to be able to compete in the wild.”

Current farming practices may quickly make the problem worse. Each year tens of thousands of acres of canola go un-harvested in the field. As a consequence, an enormous reservoir of seed is created, which can then spread into wild populations.

“Once this happens, it would be difficult to get rid of these weeds using current herbicides,” Sagers said.

While the problem looms large in North Dakota, Sagers says the message is a global one. The world recently hit a milestone, where more than 50 percent of the earth is covered in crops used for food or forage. Domesticated plants have wild cousins that often are considered weeds, and sometimes these plants can still cross breed, creating a high potential for herbicide and pesticide resistance to show up where it isn’t wanted.

“Things can escape from cultivation, and we need to be careful about what we stick into plants,” Sagers said.

In addition to Schafer and Sagers, researchers on the project included postdoctoral researchers Jason P. Londo at the University of Arkansas; Andrew X. Ross and Steven E. Travers from North Dakota State University; Peter K. van de Water of California State University in Fresno, Calif.; and Connie A. Burdick and E. Henry Lee of the U.S. Environmental Protection Agency.

Barbara Jaquish | Newswise Science News
Further information:
http://www.uark.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>