Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White eyes, foot-wide flowers, maroon plants

26.07.2010
AgriLife Research creating unique winter-hardy hibiscuses

With a little cross-breeding and some determination, Dr. Dariusz Malinowski, Texas AgriLife Research plant physiologist and forage agronomist in Vernon, is trying to add more colors to the world of hibiscuses.

Malinowski is working on breeding winter-hardy hibiscus in what started as a hobby about four years ago, but in the last year has been added to the strategic plan of the Vernon research program.

Commercialization of the flowers by Malinowski; co-worker Dr. William Pinchak, AgriLife Research-Vernon; and Steve Brown, Texas Foundation Seed Service program director, is a part of the research on non-traditional or under-utilized crops that have value because of drought tolerance.

The hardy hibiscus is a great candidate because it is a carefree plant. It doesn't have to be watered once it gets established, is low maintenance and has little disease or insect pressure, he said.

Malinowski said one objective of the breeding program is to create lines or cultivars with a range of colors. Presently, commercial cultivars come basically in three colors - white, red and pink.

"We have created so far many more colors, like lavender or mauve, different shades of fuscia and pinks," he said. "One flower we have, we want to have an almost burgundy color. Another is lavender with a big flower, big petals. And we have a plum color that is rare in hibiscus."

The goal is to have at least 11- to 12-inch diameter flowers, Malinowski said.

"We can manipulate the color and still maintain the large flowers with nice texture," he said. "We also can combine the trait of a large flower with dual colors and nice texture. That is an important value for the next step of the breeding program, to create dual colored flowers."

Malinowski said one of the species used in the breeding program is a Texas native called Texas Star Hibiscus. The value of this particular species is it provides a very different shape of flower and very different position of pollen on the stigma than found in traditional cultivars.

With the pollen allocated on top of the stigma, it gives the flower a very tropical look, he said.

"We have successfully incorporated this trait to several of the breeding lines," Malinowski said. "They are similar to the Texas Star Hibiscus, but with much larger petals, much bigger flowers, and different colors."

Another objective of the breeding program is to create cultivars with dark leaves, he said. Already he has been able to produce one plant with maroon leaves, almost brown in color.

"Such plants do not exist on the market today," Malinowski said, adding that is what his breeding program is all about – trying to provide consumers with something different that survives the winters in this region.

The way the maroon-leaved plant was created, he said, was to use some of their hybrids with darker, reddish stems, and make multiple crosses among them.

"Within two generations by crossing them, we were able to create a plant with not only dark stems, but maroon leaves," Malinowski said.

Larger flowers and different colors are a big part of the program, but now Malinowski is also trying to change the traits of the eye of the hibiscus.

"Our new objective is to create red flowering hibiscus with a white eye," he said. "Usually hibiscus flowers have a dark red or maroon or brown center eye, but rarely do they have a white eye. Last year we found a plant with large soft-pink flowers and a white eye. We are trying to transfer the trait of the white eye with the red flowering types."

Malinowski made this cross just recently. He said now the plant is expected to double up with fruit or seeds. It will take about six to eight weeks from pollination to collect mature seeds. Later, those seeds will be planted again with the hope "one or more of them will have the trait of red flowers with white eyes."

Breeding a line or new cultivar of winter-hardy hibiscus takes several years, Malinowski said. The cultivars he develops should be commercially available in two to three years in major garden centers.

In 2009, Malinowski produced about 600 crosses of hardy hibiscus and planted about 2,500 hybrids for evaluation during 2010.

To date, about 50 percent of the hybrids have bloomed and there are several of them with exceptional commercial value, he said. These lines will be vegetatively propagated and evaluated.

One goal left for the breeding program is to create a blue flowering hibiscus, Malinowski said.

The hibiscus can basically be grown from South Central Texas to Canada, as long as the required winter period is long enough for them to go dormant after the first frost, Malinowski said. The plants re-sprout from the root the following spring.

Dr. Dariusz Malinowski | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>