Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using wastewater to enhance mint production

04.03.2011
Plant distillation waste can increase yields, essential oil content in peppermint, spearmint

When essential oils are extracted from plants through the process of steam distillation, wastewater is produced and subsequently released into rivers and streams.

Finding new uses for these unused by-products could benefit essential oil crop growers and processors as well as the environment. A team of researchers has found that the residual distillation water of some aromatic plant species has a beneficial effect on yields and can increase essential oil content of peppermint and spearmint crops.

Peppermint and spearmint are commercially produced for their essential oils, dry leaves used in herbal teas, and as fresh culinary herbs. Essential oils from both mints are widely used in the production of chewing gum, toothpaste, mouthwashes, confectionaries, pharmaceuticals, and aromatherapy products. New methods of improving yield and essential oil content in peppermint and spearmint crops could produce economic benefits for large-scale production operations and create more environmentally sustainable systems.

One previous study of plant distillation wastewater found that wastewater from sage, thyme, and rosemary contained antioxidants and could be used as an ingredient in marinades for turkey meat. "We hypothesized that residual distillation water could have an effect on peppermint and spearmint plants when used as a foliar spray", said Mississippi State University professor Valtcho D. Zheljazkov, corresponding author of a study that tested plant hormones and distillation wastewater on peppermint and spearmint plants.

Zheljazkov and colleagues reported on their collaborative research in HortScience. The team evaluated the effects of three plant hormones (methyl jasmonate, gibberellic acid, and salicylic acid) at three concentrations and the residual distillation water from 15 plant species applied as foliar sprays on biomass yields, essential oil content, and essential oil yield of peppermint (Mentha x piperita 'Black Mitcham') and spearmint (Mentha spicata 'Native').

The application of salicylic acid at 1000 mg/L increased biomass yields of both species. Methyl jasmonate at 100 and 1000 mg/L, gibberellic acid at 10 mg/L, salicylic acid at 10 or 100 mg/L, and distillation water of seven plant species all increased the essential oil content of peppermint, whereas the oil content of spearmint was increased only by distillation water of one plant species.

"The study demonstrated that the residual distillation water of some aromatic plant species may have an effect on crop species and may be used as a tool for increasing essential oil content or essential oil yields of peppermint and spearmint crops. Further research is needed to elucidate the effect of these treatments on essential oil composition and to verify the effects under field conditions", said Zheljazkov.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/9/1338

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>