Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treated Biosolids Safe for Agricultural Uses

02.11.2010
A 19-year UA study shows that the end product of municipally treated wastewater is generally free of any pathogenic organisms that might harm humans or the environment.

A newly published report from a University of Arizona research group says biosolids, properly treated, pose little if any health risk to the public. The study, "Pathogens in Biosolids: Are They Safe?," is online in the Journal of Environmental Quality.

Ian L. Pepper, director of the NSF Water and Environmental Technology Center and a professor of soil, water and environmental science, or SWES, at the UA, led the study, a 19-year analysis tracking pathogens in biosolids from the wastewater stream in Tucson, Ariz. The study also included current data from 18 other wastewater treatment plants across the country.

The study's co-authors include another SWES professor, Charles P. Gerba, as well as researchers from the U.S. Department of Agriculture, Loma Linda University and Drexel University. The study is the first of its kind since current federal regulations, specifically the Environmental Protection Agency's Part 503 Rule, for wastewater treatment began in 1993.

The Part 503 Rule governs how wastewater is treated in order to maintain public and environmental safety.

Most people in the U.S. live in communities where raw sewage is treated at wastewater facilities. Biosolids, the end product of the treatment process, have a broad range of uses in agriculture, from fertilizing agricultural fields and woodlands to lawns and gardens. Biosolids fall into two categories, Class A and Class B. Both use a combination of processes to kill pathogens including heating, composting, anaerobic digestion or changing pH levels.

Class A biosolids are those that have been treated to the point where pathogens are undetectable and there are no restrictions on their use as fertilizer. Standards for Class B biosolids are less stringent and have small but measurable levels of bacteria and come with restrictions on how they can be used on crop plants, grazing livestock and human exposure.

Pepper said one big question has been what kind and how many human pathogens are found in Class B biosolids. He said the study analyzed data prior to and after 1993, when the Part 503 rule took effect in order to determine the impact of regulations.

The study, Pepper said, showed that concentrations of fecal coliform bacteria and viruses are actually lower than 1993 levels. It also showed that between 94 and 99 percent of pathogens are eliminated by wastewater treatment, crediting treatment in reducing pathogen loads.

"Further, the fact that pathogen levels are lower now than in the 1980s shows that the Part 503 Rule has been effective in reducing public exposure to pathogens relative to 25 years ago," he said.

The study suggests that levels of some enteric viruses, the bacteria Salmonella and Ascaris ova, or roundworm eggs, in the U.S. are low in Class B biosolids that are treated by anaerobic digestion. Pepper and his colleagues also found no Campylobacter or E. coli bacteria in their tests.

Other studies suggest that Class B biosolids also are treated further simply by exposure to sunlight, wind, heat and soil microbes as they are distributed as fertilizer. Using biosolids as fertilizer also is a more ecologically sound approach to their disposal than either taking up space in landfills or polluting air and water through incineration.

The UA Water and Environmental Technology Center has gained a nationwide reputation for research on biosolids by providing data on human exposure to microbial pathogens, allowing for risk assessments on potential adverse effects of pathogens on human health and welfare.

Contact:

Ian L. Pepper
NSF Water and Environmental Technology Center
520-626-3328
ipepper@ag.arizona.edu
Links:
Journal article: https://www.soils.org/publications/jeq/view/39-6/q10-0037.pdf
Ian Pepper’s website: http://ag.arizona.edu/swes/people/cv/pepper.htm
UA Water and Environmental Technology Center: http://wet.arizona.edu/
UA soil, water and environmental sciences department: http://ag.arizona.edu/swes/

| University of Arizona
Further information:
http://www.arizona.edu

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>