Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tillage, Rotation Impacts Peanut Crops

11.11.2008
A new study in Agronomy Journal shows the differing effects of tillage practice and rotation on peanut crop yield and the development of pests.

The increasing popularity of reduced tillage on crops has not only been an important development in combating soil erosion, but it has also been associated with increasing organic material and producing high crop yields.

For peanut crops, however, reduced tillage has not gained a large acceptance as a viable practice, as findings of inconsistent yields have not encouraged farmers to make a switch from conventional tillage systems.

New research study was conducted on the effects of tillage systems and crop rotation on peanut yield and pest development in the crops. The study, conducted at North Carolina State University, was recently published in Agronomy Journal, and was funded in part by the North Carolina Peanut Growers Association and the National Peanut Board.

The study found that there is an independent relationship between tillage and rotation practices with respect to peanut yield and pest development. The research began in 1999 and 2000 at two locations that used various crop rotations, including corn, cotton, and peanut, and a comparison was made between conventional tillage versus strip tillage into stubble from the previous crop stubble.

“The primary objective of this research was to determine interactions of crop rotations and tillage systems with respect to peanut,” said David Jordan, the principle researcher for the project. “Although differences in peanut yield were associated with crop rotation and tillage system, these data suggest that while farmers should expect some differences in peanut yield due to rotation and tillage, response to these management practices most likely will be independent.”

The study did find that the tillage system used did have an effect on the development of tomato spotted wilt, a disease common in southern growing states. Additionally, the research also determined that the most effective method found to increase crop yield and manage pests is to increase the number of years between peanut plantings.

Research continues to be conducted at North Carolina State University comparing crop rotation and tillage systems and possible relationships between these important aspects of cropping systems in the southern United States. According to the author, additional research is needed in other geographical regions to study alternative crops, soil characteristics, and other pest complexes.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/abstract/100/6/1580.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: http://agron.scijournals.org.
The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>