Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


TAU Researchers Root Out New and Efficient Crop Plants

A new solution addresses the problem of water loss and promises farmers "more crop per drop"
TAU research doctoral student Tal Sherman handles sample laboratory specimens

A part of the global food crisis is the inefficiency of current irrigation methods. More irrigated water evaporates than reaches the roots of crops, amounting to an enormous waste of water and energy.

Tel Aviv University researchers, however, are investigating a new solution that turns the problem upside-down, getting to the root of the issue. They are genetically modifying plants' root systems to improve their ability to find the water essential to their survival.

The Root Cause of Wasting Water

When it comes to water, every drop counts. "Improving water uptake by irrigated crops is very important," says Prof. Amram Eshel, the study's co-researcher from Tel Aviv University's Plant Sciences Department. His team, with that of Prof. Hillel Fromm, hope to engineer a plant that takes advantage of a newly discovered gene that controls hydrotropism, a plant's ability to send its roots towards water.

Scientists in TAU's lab are observing plants that are grown on moist air in the University's lab, making it possible to investigate how the modified plant roots orient themselves towards water. Until now, aeroponics (a method of growing plants in air and mist) was a benchtop technique used only in small-scale applications. The current research is being done on the experimental model plant Arabidopsis, a small flowering plant related to cabbage and mustard.

Environmental Consequences Have Economic Consequences Too

"Our aim is to save water," explains Prof. Eshel. "We are increasing a plant's efficiency for water uptake. Plants that can sense water in a better fashion will be higher in economic value in the future."

There can be significant water-saving consequences for farmers around the world. "We are developing plants that are more efficient in sensing water," says research doctoral student Tal Sherman, who is working under Prof. Amram Eshel and Prof. Hillel Fromm. The project is funded by a grant from the Israeli Ministry of Agriculture and Rural Development to Prof. Fromm and Prof. Eshel.

Ideas Planted in Darwin's Time

In the nineteenth century, scientists were already observing that plant roots naturally seek out the wetter regions in soil.

Although the phenomenon is well documented, scientists until recently had no clue as to how the mechanism worked, or how to make it better. New insights from the Tel Aviv University study could lead to plants that are super water seekers, say researchers.

The groundbreaking research at Tel Aviv University was conducted at the Sarah Racine Root Research Laboratory, the first large-scale aeroponics lab in the world. The Racine lab was founded 20 years ago by Prof. Yoav Waisel through a donation from the Racine family of Israel. Today it is the largest laboratory of its kind.

Prof. Eshel's team is working on a number of other projects to save the planet's resources. For example, they are currently investigating the use of a latex-producing shrub, Euphoria tirucalii, which can be grown easily in the desert, as a source for biofuel.

George Hunka | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>