Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switchgrass lessens soil nitrate loss into waterways

11.08.2010
By planting switchgrass and using certain agronomic practices, farmers can significantly reduce the amount of nitrogen and nitrates that leach into the soil, according to Iowa State University research.

Matt Helmers, associate professor of agricultural and biosystems engineering, and Antonio Mallarino, professor of agronomy, have been studying the amount of nitrates that pass through soil into tiling systems from several different types of crops and fertilizer treatments for the past three summers.

The research is funded by the Iowa Department of Agriculture and Land Stewardship and Iowa State's Leopold Center for Sustainable Agriculture.

They found that certain practices can minimize the amount of nitrogen and nitrates that leach from the field into the drainage tiles.

"One of the biggest things we found is that when alternative biomass sources like switchgrass are grown, even when they use fertilizer, we see dramatically lower nitrate concentrations (in the drainage water)," said Helmers.

The research compared fields that were planted with continuous corn while harvesting just the grain; continuous corn taking the grain and stover; and planting continuous corn taking all possible biomass from the fields. Half of those fields were treated with fertilizer and the other half with manure.

Other fields tested systems that rotate corn and soybeans, and others looked at switchgrass plots that received nitrogen fertilizer.

The results showed that fields planted in continuous corn and treated with fertilizer had the most amount of nitrates leach below the crop root zone into the tile system.

The fields with the least amount of nitrates that leached through the soil were planted in switchgrass and treated with fertilizer or manure.

Helmers says that while switchgrass allows less nitrogen to leach into the soil, farmers need reason plant it.

"Right now, there is not necessarily an economic market for (switchgrass)," said Helmers.

"What we're trying to do is evaluate what might be the environmental benefits of that type of land use," he said. "I think that may be able to inform future policy.

"If we pursue a strategy for additional biofuels from various biomass feedstocks, we need to know what the environmental impacts of those different feedstocks are, because that may play into federal policy," Helmers said.

"If there is enough societal benefit and water quality benefit from growing switchgrass on these soils, there may be potential incentives for producers to grow (switchgrass)," he said.

Helmers estimates that at least a third and possibly as much as half of all farmland in Iowa use tile systems to drain excess water from the fields.

Nitrates that leach into the soil can affect Iowa communities that depend on the rivers for clean drinking water, Helmers says.

Nitrates that leach into the soil and are carried downstream are believed to contribute to a dead zone in the Gulf of Mexico where few plants or animals survive.

Overall, there is need for additional information on how biomass feedstock production systems impact nitrate leaching, said Helmers.

"We do frequently get questions about what is the nitrate level leaching from grassland systems compared to corn and soybean," said Helmers.

Matt Helmers | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>