Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switchgrass lessens soil nitrate loss into waterways

11.08.2010
By planting switchgrass and using certain agronomic practices, farmers can significantly reduce the amount of nitrogen and nitrates that leach into the soil, according to Iowa State University research.

Matt Helmers, associate professor of agricultural and biosystems engineering, and Antonio Mallarino, professor of agronomy, have been studying the amount of nitrates that pass through soil into tiling systems from several different types of crops and fertilizer treatments for the past three summers.

The research is funded by the Iowa Department of Agriculture and Land Stewardship and Iowa State's Leopold Center for Sustainable Agriculture.

They found that certain practices can minimize the amount of nitrogen and nitrates that leach from the field into the drainage tiles.

"One of the biggest things we found is that when alternative biomass sources like switchgrass are grown, even when they use fertilizer, we see dramatically lower nitrate concentrations (in the drainage water)," said Helmers.

The research compared fields that were planted with continuous corn while harvesting just the grain; continuous corn taking the grain and stover; and planting continuous corn taking all possible biomass from the fields. Half of those fields were treated with fertilizer and the other half with manure.

Other fields tested systems that rotate corn and soybeans, and others looked at switchgrass plots that received nitrogen fertilizer.

The results showed that fields planted in continuous corn and treated with fertilizer had the most amount of nitrates leach below the crop root zone into the tile system.

The fields with the least amount of nitrates that leached through the soil were planted in switchgrass and treated with fertilizer or manure.

Helmers says that while switchgrass allows less nitrogen to leach into the soil, farmers need reason plant it.

"Right now, there is not necessarily an economic market for (switchgrass)," said Helmers.

"What we're trying to do is evaluate what might be the environmental benefits of that type of land use," he said. "I think that may be able to inform future policy.

"If we pursue a strategy for additional biofuels from various biomass feedstocks, we need to know what the environmental impacts of those different feedstocks are, because that may play into federal policy," Helmers said.

"If there is enough societal benefit and water quality benefit from growing switchgrass on these soils, there may be potential incentives for producers to grow (switchgrass)," he said.

Helmers estimates that at least a third and possibly as much as half of all farmland in Iowa use tile systems to drain excess water from the fields.

Nitrates that leach into the soil can affect Iowa communities that depend on the rivers for clean drinking water, Helmers says.

Nitrates that leach into the soil and are carried downstream are believed to contribute to a dead zone in the Gulf of Mexico where few plants or animals survive.

Overall, there is need for additional information on how biomass feedstock production systems impact nitrate leaching, said Helmers.

"We do frequently get questions about what is the nitrate level leaching from grassland systems compared to corn and soybean," said Helmers.

Matt Helmers | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>