Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sustainable recultivation of abandoned agricultural land in Russia, Ukraine and Belarus

04.12.2013
Researchers have developed a model which allows estimating the agricultural potentials of this region and the degree of carbon emissions associated with recultivating abandoned agricultural land

There exists widespread agricultural land abandonment in the territory of the former Soviet Union. Recultivation of this land would help meet the increasing food demand of a growing world population. However, the soil and vegetation of these areas store significant amounts of carbon and recultivation would result in high carbon emissions and thereby contribute to global warming.


Carbon sequestration on abandoned agricultural land in European Russia, Ukraine and Belarus
Image: Florian Schierhorn


Abandoned agricultural land in Russia
Photo: Alexander V. Prishchepov

Researchers from the Leibniz-Institute for Agricultural Development in Central and Eastern Europe (IAMO), of Humboldt-Universität zu Berlin and Potsdam Institute for Climate Impact Research have developed a model which allows a better understanding of the spatial distribution and abandoned land and thereby of the agricultural potentials of this region.

Furthermore, it helps identify areas where recultivation is associated with lower carbon emission. The results of this study can be found in the article „Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine and Belarus“, which was published in the renowned scientific journal Global Biogeochemical Cycles.

A growing population and changing consumption habits have caused a drastic increase in global food demand. However, with intensification of agricultural production systems often come adverse impacts for the environment. Specifically, agricultural land use accounts for approximately one third of global greenhouse gas emissions. “The question of how to increase agricultural output while limiting emissions due to land use is therefore a key challenge of humanity”, explains IAMO researcher Florian Schierhorn, who is the principle investigator in this research project.

Given this background, reclamation of previously cultivated but currently abandoned agricultural land is an interesting opportunity to raise global agricultural production. Large areas of abandoned land can be found in former Soviet Union countries, where the most widespread episode of land use change occurred after the collapse of socialism. These vast, currently unused lands suggest a large potential resource of untapped agricultural production. However, abandoned land may sequester significant amounts of carbon, and recultivation is likely to be associated with considerable HGH emissions. Therefore, trade-offs between increasing agricultural production thorugh land recultivation and the associated carbon emissions must be considered.

The researchers developed a spatial allocation model to produce high-resolution annual maps of cropland and abandoned croplands in European Russia, Ukraine and Belarus. The algorithm distributed sown area statistics to the most suitable locations, with consideration of global land use maps and geophysical data such as precipitation, soil quality, and transportation costs to larger cities. Then the researchers simulated the dynamics of carbon sequestration due to cropland abandonment using a dynamic vegetation model which was developed at the Potsdam Institute for Climate Impact Research.

The researchers found a total of 87 million ha of cropland and 31 million ha of abandoned cropland in European Russia, Ukraine and Belarus. Therefore, previous accounts of the amount of abandoned cropland have been greatly underestimated. The model revealed that cropland abandonment resulted in a net carbon sink of 470 million tonnes for the years 1990 through 2009. Moreover, the amount of carbon sequestered increased substantially after approximately 2000, as it usually takes 5 to 10 years for former cropland to transition from a carbon source to a carbon sink. Recultivation of older abandoned land would be associated with higher carbon emissions and led to substantial amounts of carbon not being sequestered in the vegetation currently developing on idle croplands. “Coupling the different powerful models permit assessing the advantages and disadvantages of the recultivation of abandoned cropland and thus of increasing agricultural production in this globally important agricultural region”, explains researcher Daniel Müller, who was an essential contributor in this study.

Publication
Schierhorn, F., Müller, D., Beringer, T., Prishchepov, A., Kuemmerle, T., Balmann, A. (2013): Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine and Belarus, Global Biogeochemical Cycles, Vol. 27. http://dx.doi.org/10.1002/2013GB004654
About IAMO
The Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO) analyses economic, social and political processes of change in the agricultural and food sector, and in rural areas. The geographic focus covers the enlarging EU, transition regions of Central, Eastern and South Eastern Europe, as well as Central and Eastern Asia. IAMO is making a contribution towards enhancing understanding of institutional, structural and technological changes. Moreover, IAMO is studying the resulting impacts on the agricultural and food sector as well as the living conditions of rural populations. The outcomes of our work are used to derive and analyse strategies and options for enterprises, agricultural markets and politics. Since its foundation in 1994, IAMO has been part of the Leibniz Association, a German community of independent research institutes.
Academic Contact
Florian Schierhorn
Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO)
Tel.: +49 345 2928-335 | Fax: +49 345 2928-399
schierhorn@iamo.de
Media contact
Rebekka Honeit
Public Relations
Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO)
Tel.: +49 345 2928-329 | Fax: +49 345 2928-499
presse@iamo.de
Weitere Informationen:
http://www.iamo.de/lsc
– IAMO Land System Change Group
http://www.iamo.de/lsc/downloads.html
– Cropland abandonment data
http://www.iamo.de
– Leibniz of Agricultural Development in Central and Eastern Europe (IAMO)

Rebekka Honeit | Leibniz-Institut
Further information:
http://www.iamo.de/

More articles from Agricultural and Forestry Science:

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

nachricht Alfalfa loss? Annual ryegrass is a win
03.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>