Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sustainable recultivation of abandoned agricultural land in Russia, Ukraine and Belarus

Researchers have developed a model which allows estimating the agricultural potentials of this region and the degree of carbon emissions associated with recultivating abandoned agricultural land

There exists widespread agricultural land abandonment in the territory of the former Soviet Union. Recultivation of this land would help meet the increasing food demand of a growing world population. However, the soil and vegetation of these areas store significant amounts of carbon and recultivation would result in high carbon emissions and thereby contribute to global warming.

Carbon sequestration on abandoned agricultural land in European Russia, Ukraine and Belarus
Image: Florian Schierhorn

Abandoned agricultural land in Russia
Photo: Alexander V. Prishchepov

Researchers from the Leibniz-Institute for Agricultural Development in Central and Eastern Europe (IAMO), of Humboldt-Universität zu Berlin and Potsdam Institute for Climate Impact Research have developed a model which allows a better understanding of the spatial distribution and abandoned land and thereby of the agricultural potentials of this region.

Furthermore, it helps identify areas where recultivation is associated with lower carbon emission. The results of this study can be found in the article „Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine and Belarus“, which was published in the renowned scientific journal Global Biogeochemical Cycles.

A growing population and changing consumption habits have caused a drastic increase in global food demand. However, with intensification of agricultural production systems often come adverse impacts for the environment. Specifically, agricultural land use accounts for approximately one third of global greenhouse gas emissions. “The question of how to increase agricultural output while limiting emissions due to land use is therefore a key challenge of humanity”, explains IAMO researcher Florian Schierhorn, who is the principle investigator in this research project.

Given this background, reclamation of previously cultivated but currently abandoned agricultural land is an interesting opportunity to raise global agricultural production. Large areas of abandoned land can be found in former Soviet Union countries, where the most widespread episode of land use change occurred after the collapse of socialism. These vast, currently unused lands suggest a large potential resource of untapped agricultural production. However, abandoned land may sequester significant amounts of carbon, and recultivation is likely to be associated with considerable HGH emissions. Therefore, trade-offs between increasing agricultural production thorugh land recultivation and the associated carbon emissions must be considered.

The researchers developed a spatial allocation model to produce high-resolution annual maps of cropland and abandoned croplands in European Russia, Ukraine and Belarus. The algorithm distributed sown area statistics to the most suitable locations, with consideration of global land use maps and geophysical data such as precipitation, soil quality, and transportation costs to larger cities. Then the researchers simulated the dynamics of carbon sequestration due to cropland abandonment using a dynamic vegetation model which was developed at the Potsdam Institute for Climate Impact Research.

The researchers found a total of 87 million ha of cropland and 31 million ha of abandoned cropland in European Russia, Ukraine and Belarus. Therefore, previous accounts of the amount of abandoned cropland have been greatly underestimated. The model revealed that cropland abandonment resulted in a net carbon sink of 470 million tonnes for the years 1990 through 2009. Moreover, the amount of carbon sequestered increased substantially after approximately 2000, as it usually takes 5 to 10 years for former cropland to transition from a carbon source to a carbon sink. Recultivation of older abandoned land would be associated with higher carbon emissions and led to substantial amounts of carbon not being sequestered in the vegetation currently developing on idle croplands. “Coupling the different powerful models permit assessing the advantages and disadvantages of the recultivation of abandoned cropland and thus of increasing agricultural production in this globally important agricultural region”, explains researcher Daniel Müller, who was an essential contributor in this study.

Schierhorn, F., Müller, D., Beringer, T., Prishchepov, A., Kuemmerle, T., Balmann, A. (2013): Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine and Belarus, Global Biogeochemical Cycles, Vol. 27.
About IAMO
The Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO) analyses economic, social and political processes of change in the agricultural and food sector, and in rural areas. The geographic focus covers the enlarging EU, transition regions of Central, Eastern and South Eastern Europe, as well as Central and Eastern Asia. IAMO is making a contribution towards enhancing understanding of institutional, structural and technological changes. Moreover, IAMO is studying the resulting impacts on the agricultural and food sector as well as the living conditions of rural populations. The outcomes of our work are used to derive and analyse strategies and options for enterprises, agricultural markets and politics. Since its foundation in 1994, IAMO has been part of the Leibniz Association, a German community of independent research institutes.
Academic Contact
Florian Schierhorn
Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO)
Tel.: +49 345 2928-335 | Fax: +49 345 2928-399
Media contact
Rebekka Honeit
Public Relations
Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO)
Tel.: +49 345 2928-329 | Fax: +49 345 2928-499
Weitere Informationen:
– IAMO Land System Change Group
– Cropland abandonment data
– Leibniz of Agricultural Development in Central and Eastern Europe (IAMO)

Rebekka Honeit | Leibniz-Institut
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>