Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study challenges soil testing for potassium and the fertilizer value of potassium chloride

29.10.2013
In the chemical age of agriculture that began in the 1960s, potassium chloride (KCl), the common salt often referred to as potash, is widely used as a major fertilizer in the Corn Belt without regard to the huge soil reserves that were once recognized for their fundamental importance to soil fertility.

Three University of Illinois soil scientists have serious concerns with the current approach to potassium management that has been in place for the past five decades because their research has revealed that soil K testing is of no value for predicting soil K availability and that KCl fertilization seldom pays.


This is an aerial view of crops.

Credit: University of Illinois

U of I researchers Saeed Khan, Richard Mulvaney, and Timothy Ellsworth are the authors of "The potassium paradox: Implications for soil fertility, crop production and human health," which was posted on October 10th by Renewable Agriculture and Food Systems.

A major finding came from a field study that involved four years of biweekly sampling for K testing with or without air-drying. Test values fluctuated drastically, did not differentiate soil K buildup from depletion, and increased even in the complete absence of K fertilization.

Explaining this increase, Khan pointed out that for a 200-bushel corn crop, "about 46 pounds of potassium is removed in the grain, whereas the residues return 180 pounds of potassium to the soil—three times more than the next corn crop needs and all readily available."

Khan emphasized the overwhelming abundance of soil K, noting that soil test levels have increased over time where corn has been grown continuously since the Morrow Plots were established in 1876 at the University of Illinois. As he explained, "In 1955 the K test was 216 pounds per acre for the check plot where no potassium has ever been added. In 2005, it was 360." Mulvaney noted that a similar trend has been seen throughout the world in numerous studies with soils under grain production.

Recognizing the inherent K-supplying power of Corn Belt soils and the critical role of crop residues in recycling K, the researchers wondered why producers have been led to believe that intensive use of KCl is a prerequisite for maximizing grain yield and quality. To better understand the economic value of this fertilizer, they undertook an extensive survey of more than 2,100 yield response trials, 774 of which were under grain production in North America. The results confirmed their suspicions because KCl was 93 percent ineffective for increasing grain yield. Instead of yield gain, the researchers found more instances of significant yield reduction.

The irony, according to Mulvaney, is that before 1960 there was very little usage of KCl fertilizer. He explained, "A hundred years ago, U of I researcher Cyril Hopkins saw little need for Illinois farmers to fertilize their fields with potassium," Mulvaney said. "Hopkins promoted the Illinois System of Permanent Fertility, which relied on legume rotations, rock phosphate, and limestone. There was no potash in that system. He realized that Midwest soils are well supplied with K. And it's still true of the more productive soils around the globe. Potassium is one of the most abundant elements in the earth's crust and is more readily available than nitrogen, phosphorus, or sulfur. Farmers have been taught to think that fertilizers are the source of soil fertility—that the soil is basically an inert rooting medium that supports the plant."

Khan and his colleagues pointed out that KCl fertilization has long been promoted as a prerequisite for high nutritional value for food and feed. To their surprise, they found that the qualitative effects were predominantly detrimental, based on a survey of more than 1,400 field trials reported in the scientific literature. As Khan explained, "Potassium depresses calcium and magnesium, which are beneficial minerals for any living system. This can lead to grass tetany or milk fever in livestock, but the problems don't stop there.

Low-calcium diets can also trigger human diseases such as osteoporosis, rickets, and colon cancer. Another major health concern arises from the chloride in KCl, which mobilizes cadmium in the soil and promotes accumulation of this heavy metal in potato and cereal grain. This contaminates many common foods we eat—bread, potatoes, potato chips, French fries—and some we drink, such as beer. I'm reminded of a recent clinical study that links cadmium intake to an increased risk of breast cancer."

While working in the northwestern part of Pakistan three decades ago, Khan was surprised to discover another use for KCl fertilizer. "I saw an elderly man making a mud wall from clay," Khan said. "He was using the same bag of KCl that I was giving to farmers, but he was mixing it with the clay. I asked why he was using this fertilizer, and he explained that by adding potassium chloride, the clay becomes really tough like cement. He was using it to strengthen the mud wall."

"The man's understanding was far ahead of mine," continued Khan, "and helped me to finally realize that KCl changes the soil's physical properties. Civil engineers know this, too, and use KCl as a stabilizer to construct mud roads and foundations." Mulvaney mentioned that he had demonstrated the cementing effect of KCl in his soil fertility class, and that calcium from liming has the opposite effect of softening the soil. He cautioned against the buildup philosophy that has been widely advocated for decades, noting that agronomic productivity can be adversely affected by collapsing clay, which reduces the soil's capacity to store nutrients and water and also restricts rooting.

Khan and Mulvaney see no value in soil testing for exchangeable K and instead recommend that producers periodically carry out their own strip trials to evaluate whether K fertilization is needed. Based on published research cited in their paper, they prefer the use of potassium sulfate, not KCl.

The full paper is available as an open access article at http://tinyurl.com/k32msg9.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>