Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strengthening a billion-dollar gene in soybeans

16.10.2012
Soybean cyst nematode (SCN) does hundreds of millions of dollars' worth of damage each year. Matt Hudson and Brian Diers, crop sciences researchers at the University of Illinois and Andrew Bent at the University of Wisconsin, think they may have found a way to strengthen plant resistance. The research has just been published in Science Express.

Diers and Hudson, with researchers at Wisconsin and the University of Nebraska, have been studying an area on chromosome 18 called Rhg1 (Resistance to H. glycines) that is known to be the location of the main source of SCN resistance. Rhg1 disrupts the formation and maintenance of potential nematode-feeding sites on plant roots.

Most SCN-resistant soybeans in the Midwest are bred to contain Rhg1, but no one knew the DNA sequence of the gene that was responsible for the resistance. Diers wanted to find it.

"You could say it's a billion-dollar gene because it's in many varieties, it's widely used, and it's protecting varieties against these nematodes," he explained.

Using fine mapping, which is a technique that involves mapping genes in a very constrained area, Diers narrowed the search down to a few gene candidates. At that point, Hudson and Bent got involved in the analysis.

By then, the soybean genome sequence had been completed, greatly facilitating their research. "It became possible to know which genes were within the genetic intervals that people had historically used to confer traits like nematode resistance," Hudson said.

"When we had the genome sequenced, most people were shocked by how many genes there were in regions that people considered to be one gene," he continued. "By doing these fine-mapping experiments, you could get it down to a smaller number of possible genes."

There was, however, one big problem: the soybean that had been sequenced was not nematode-resistant.

"So, however many genes there were in the Rhg1 interval, we knew that the gene that actually makes the plants nematode-resistant wasn't there," Hudson said.

They went back to the nematode-resistant line and sequenced the genome in the interval. When they finished, they saw something very unusual. Rather than finding a gene in the resistant line that was not present in the susceptible line or changes in a gene that was present in both, they saw that a group of four genes had been replicated several times.

With further work, they found that nearly every soybean variety that is known to be SCN resistant has more than one set of these genes. The Peking variety has three copies of this group, and the Fayette variety has 10. The susceptible variety, Williams, has only one copy.

The Wisconsin researchers used a technique called Fiber-FISH to show that the genes make soybeans nematode-resistant. It allowed them to look into the DNA molecule and count the number of genes in a row. They also found that levels of expression of these genes were higher where there were more copies of the genes.

They artificially increased the expression rates of three of the genes together on soybean roots and were able to replicate the resistance effect. They were not able to replicate the effect using any of the genes on its own.

The results are interesting from a scientific point of view because having several genes next to each other that control the same trait is unusual in multicellular organisms. So is having an effect that is clearly due to multiple repeats of a stretch of DNA.

"We think we've found a new mechanism for plant resistance," Hudson said. "It's not a question of the presence versus the absence of a resistance gene, it's a question of the level of expression of these genes."

The practical implication of this study is that it suggests a way to engineer artificial resistance that is stronger than natural resistance. The researchers have received a grant from the United Soybean Board to pursue this.

The Soybean Disease Biotech Research Center at the U of I provided funding for this project.

Susan Jongeneel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>