Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing the cow's genetic code -- a new agricultural era dawns

27.04.2009
Researchers from the Universities of Geneva and Lausanne, as well as the Swiss Institute of Bioinformatics have been part of a major international project to sequence the bovine (cow) genome, a female Hereford cow named L1 Dominette.

Sequencing the bovine genome is now complete, paving the way for research into more sustainable food production, taking into account the needs of an increasing world population.

The genome provides a major novel resource to study not only mammalian evolution but also cattle-specific biology, reported an international consortium of researchers in the April 23 issue of the journal Science. A companion study on the genetic bases of mammalian milk is published in parallel.

The large-scale undertaking mobilized more than 300 scientists from 25 countries over six years. The findings of this study provide the means to select animals with a smaller environmental footprint, particularly animals with less greenhouse gas emissions.

"The bovine genome is more similar to that of humans than mice or rats at all levels, from genomic DNA rearrangements, to shared genes and identity of their protein sequences" said Evgeny Zdobnov, one of the lead analysts from the project and a researcher at the University of Geneva and the Swiss Institute of Bioinformatics.

He explains that "the finding that about 75% of human genes are well conserved across mammals is striking. The bovine genome gives us further insight into human biology, allowing us to highlight the loss or gain of certain gene families in hominoids.

For example, humans have lost a large number of genes which encode the receptors that recognize molecules surrounding a cell and activate the necessary answers."

The research conducted by the teams of Professor Alexandre Reymond at UNIL and Professors Stylianos E. Antonarakis and Evgeny Zdobnov at UNIGE, has determined that the cow genome is made up of at least 22'000 protein-coding genes and 500 miRNAs, a class of genes that regulates the production of most of these proteins.

The majority of the genes in the former group can encode several different proteins through a mechanism called alternative splicing. "The sequencing of the cow genome allowed us to determine that this diversification mechanism is more evolutionary conserved than previously thought", says Alexandre Reymond, the leader of the analysis.

It appears that chromosomal rearrangements are essential for the acquisition of differences between mammals. In cattle biology, they have an influence on the genes involved in the processes of immunity, lactation, digestion and metabolism. These changes could help explain the amazing ability of cattle to efficiently convert low-quality forage into energy-dense meat and milk, processes long exploited by man.

Janice Blondeau | EurekAlert!
Further information:
http://www.isb-sib.ch
http://www.unil.ch

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>