Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing the cow's genetic code -- a new agricultural era dawns

27.04.2009
Researchers from the Universities of Geneva and Lausanne, as well as the Swiss Institute of Bioinformatics have been part of a major international project to sequence the bovine (cow) genome, a female Hereford cow named L1 Dominette.

Sequencing the bovine genome is now complete, paving the way for research into more sustainable food production, taking into account the needs of an increasing world population.

The genome provides a major novel resource to study not only mammalian evolution but also cattle-specific biology, reported an international consortium of researchers in the April 23 issue of the journal Science. A companion study on the genetic bases of mammalian milk is published in parallel.

The large-scale undertaking mobilized more than 300 scientists from 25 countries over six years. The findings of this study provide the means to select animals with a smaller environmental footprint, particularly animals with less greenhouse gas emissions.

"The bovine genome is more similar to that of humans than mice or rats at all levels, from genomic DNA rearrangements, to shared genes and identity of their protein sequences" said Evgeny Zdobnov, one of the lead analysts from the project and a researcher at the University of Geneva and the Swiss Institute of Bioinformatics.

He explains that "the finding that about 75% of human genes are well conserved across mammals is striking. The bovine genome gives us further insight into human biology, allowing us to highlight the loss or gain of certain gene families in hominoids.

For example, humans have lost a large number of genes which encode the receptors that recognize molecules surrounding a cell and activate the necessary answers."

The research conducted by the teams of Professor Alexandre Reymond at UNIL and Professors Stylianos E. Antonarakis and Evgeny Zdobnov at UNIGE, has determined that the cow genome is made up of at least 22'000 protein-coding genes and 500 miRNAs, a class of genes that regulates the production of most of these proteins.

The majority of the genes in the former group can encode several different proteins through a mechanism called alternative splicing. "The sequencing of the cow genome allowed us to determine that this diversification mechanism is more evolutionary conserved than previously thought", says Alexandre Reymond, the leader of the analysis.

It appears that chromosomal rearrangements are essential for the acquisition of differences between mammals. In cattle biology, they have an influence on the genes involved in the processes of immunity, lactation, digestion and metabolism. These changes could help explain the amazing ability of cattle to efficiently convert low-quality forage into energy-dense meat and milk, processes long exploited by man.

Janice Blondeau | EurekAlert!
Further information:
http://www.isb-sib.ch
http://www.unil.ch

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>