Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor important to understanding root, seedling development

24.08.2010
A biosensor utilizing black platinum and carbon nanotubes developed at Purdue University will help give scientists a better understanding of how the plant hormone auxin regulates root growth and seedling establishment.

Marshall Porterfield, an associate professor of agricultural and biological engineering and biomedical engineering, created a new sensor to detect the movement of auxin along a plant's root surface in real time without damaging the plants.

The nanomaterials at the sensor's tip react with auxin and create an electrical signal that can be measured to determine the auxin concentration at a single point. The sensor oscillates, taking concentration readings at different points around a plant root. An algorithm then determines whether auxin is being released or taken in by surrounding cells.

"It is the equilibrium and transport dynamics that are important with auxin," said Porterfield, whose findings were published in the early online version of The Plant Journal.

A current focus of auxin research is understanding how this hormone regulates root growth in plants growing on sub-optimal soils. Angus Murphy, a Purdue professor of horticulture and the paper's co-author, said that worldwide pressure on land for food and energy crops drives efforts to better understand how plant roots adapt to marginal soils. Auxin is one of the major hormones involved in that adaptive growth.

"It's the key effector of these processes," Murphy said.

Although sensors using similar nanomaterials have been in use for real-time measurement of auxin levels along a root surface for several years, those earlier sensors required application of external auxin at toxic levels as part of the measurement process. Porterfield and Eric McLamore, a former Purdue postdoctoral researcher, created a new algorithm to decode the information obtained from the sensor. The algorithm processes the sensor information to show whether the hormone is moving into or out of cells. This allows the sensor to be self-referencing, eliminates the need for auxin application, and allows instantaneous and continuous measurements to be made during root growth.

Other current methods based on radioisotope tracers and auxin-responsive fluorescent proteins inserted into the plant can detect changes taking place over hours. Most auxin responses take place on a timescale of minutes.

Murphy said auxin movement is key to how plants adapt to their environments. He said that the effort to develop the sensor with Porterfield originated with the need to improve real-time measurement capability and develop a method that allows comparison with other measurements to better understand how auxin transport and other biological functions are connected.

"Using sensors like this, we can get answers that just aren't possible with existing tools," Murphy said. "Being able to measure the efflux and uptake simultaneously is really essential to a lot of ongoing work."

Murphy and Porterfield were looking for a simple model to use to test the sensor and chose an auxin transport mutant in corn. Wendy Peer, a Purdue assistant professor of horticulture and a paper co-author who studies seedling development and establishment, collaborated with Murphy in a detailed analysis of auxin transport in mutant and control corn roots using traditional methods. The information was then used to validate the sensor's functionality.

Murphy plans to continue testing on other auxin-related mutants. The National Science Foundation and the U. S. Department of Energy funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Sources: Marshall Porterfield, 765-494-1190, porterf@purdue.edu
Angus Murphy, 765-496-7956, Murphy@purdue.edu
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Murphy Purdue Sensor algorithm biological function

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>