Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of potato blight evolution could help farmers fight back

31.01.2014
Scientists have discovered vital clues as to how the pathogen responsible for the Irish potato famine adapted to spread between different plant species

Scientists have discovered vital clues as to how the pathogen responsible for the Irish potato famine adapted to spread between different plant species.


Mirabilis jalapa (the four o'clock flower). This plant is the host of Phytophthora mirabilis, the sister species of the Irish potato famine pathogen Phytophthora infestans.

Credit: Sophien Kamoun, The Sainsbury Laboratory (Norwich, UK)

Researchers at Oxford University and The Sainsbury Laboratory (Norwich, UK) looked in unprecedented detail at how Phytophthora infestans, a pathogen that continues to blight potatoes and tomatoes today, evolved to target other plants.

The study, published today in the journal Science, is the first to show how pathogens switch from targeting one species to another through changes at the molecular level. Researchers examined the biochemical differences between Phytophthora infestans and sister species Phytophthora mirabilis, a pathogen that split from P. infestans around 1300 years ago to target the Mirabilis jalapa plant, commonly known as the four o'clock flower. They found that each pathogen species secretes specialized substances to shut down the defences of their target hosts.

'Plants have these enzymes called proteases that play a key role in their defence systems,' said Dr Renier van der Hoorn, co-author of the study from Oxford University's Department of Plant Sciences. 'When a plant becomes infected, proteases help plants to attack the invading pathogens and trigger immune responses. P. infestans secretes substances called effectors that disable proteases in potatoes and tomatoes. These are highly specialized to block specific proteases in the host plant, fitting like a key into a lock.'

The effectors secreted by P. infestans are less effective against proteases in other plants such as the four o'clock, as they do not fit well into the 'locks'. The researchers found that P. mirabilis evolved effectors that disable the defences of the four o'clock plant but are no longer effective against potatoes or tomatoes.

'For the first time, we have found a direct molecular mechanism underpinning the change in host specialisation,' said Dr van der Hoorn. 'We looked at specialisation in the blight pathogens' secret weapon, a key family of effectors called 'EPIC' that can pass through plants' defences undetected to disable the proteases. The EPIC effectors secreted by P. infestans have evolved to fit the structure of potato proteases just as P. mirabilis has evolved effectors that fit four o'clock proteases.

'If we could breed plants with proteases that can detect these stealthy EPIC effectors, we could prevent them from 'sneaking in' and thus make more resistant plants. Within the next decade, we plan to exploit the specialized nature of these effectors to develop proteases that are resistant to their action or can even trap them and destroy the pathogen. Potato and tomato plants with such proteases would be resistant to the blight pathogens, and combined with other resistant traits could provide another 'wall' of defence against the pathogens.'

The study was funded by the Gatsby Charitable Foundation, the UK Biotechnology and Biological Sciences Research Council, Ohio State University and the US Department of Agriculture.

News & Information Office | EurekAlert!
Further information:
http://www.ox.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>