Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of potato blight evolution could help farmers fight back

31.01.2014
Scientists have discovered vital clues as to how the pathogen responsible for the Irish potato famine adapted to spread between different plant species

Scientists have discovered vital clues as to how the pathogen responsible for the Irish potato famine adapted to spread between different plant species.


Mirabilis jalapa (the four o'clock flower). This plant is the host of Phytophthora mirabilis, the sister species of the Irish potato famine pathogen Phytophthora infestans.

Credit: Sophien Kamoun, The Sainsbury Laboratory (Norwich, UK)

Researchers at Oxford University and The Sainsbury Laboratory (Norwich, UK) looked in unprecedented detail at how Phytophthora infestans, a pathogen that continues to blight potatoes and tomatoes today, evolved to target other plants.

The study, published today in the journal Science, is the first to show how pathogens switch from targeting one species to another through changes at the molecular level. Researchers examined the biochemical differences between Phytophthora infestans and sister species Phytophthora mirabilis, a pathogen that split from P. infestans around 1300 years ago to target the Mirabilis jalapa plant, commonly known as the four o'clock flower. They found that each pathogen species secretes specialized substances to shut down the defences of their target hosts.

'Plants have these enzymes called proteases that play a key role in their defence systems,' said Dr Renier van der Hoorn, co-author of the study from Oxford University's Department of Plant Sciences. 'When a plant becomes infected, proteases help plants to attack the invading pathogens and trigger immune responses. P. infestans secretes substances called effectors that disable proteases in potatoes and tomatoes. These are highly specialized to block specific proteases in the host plant, fitting like a key into a lock.'

The effectors secreted by P. infestans are less effective against proteases in other plants such as the four o'clock, as they do not fit well into the 'locks'. The researchers found that P. mirabilis evolved effectors that disable the defences of the four o'clock plant but are no longer effective against potatoes or tomatoes.

'For the first time, we have found a direct molecular mechanism underpinning the change in host specialisation,' said Dr van der Hoorn. 'We looked at specialisation in the blight pathogens' secret weapon, a key family of effectors called 'EPIC' that can pass through plants' defences undetected to disable the proteases. The EPIC effectors secreted by P. infestans have evolved to fit the structure of potato proteases just as P. mirabilis has evolved effectors that fit four o'clock proteases.

'If we could breed plants with proteases that can detect these stealthy EPIC effectors, we could prevent them from 'sneaking in' and thus make more resistant plants. Within the next decade, we plan to exploit the specialized nature of these effectors to develop proteases that are resistant to their action or can even trap them and destroy the pathogen. Potato and tomato plants with such proteases would be resistant to the blight pathogens, and combined with other resistant traits could provide another 'wall' of defence against the pathogens.'

The study was funded by the Gatsby Charitable Foundation, the UK Biotechnology and Biological Sciences Research Council, Ohio State University and the US Department of Agriculture.

News & Information Office | EurekAlert!
Further information:
http://www.ox.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>