Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scarcity of phosphorus threat to global food production

11.03.2010
Phosphorus is just as important to agriculture as water. But a lack of availability and accessibility of phosphorus is an emerging problem that threatens our capacity to feed the global population. Like nitrogen and potassium, it is a nutrient that plants take up from the soil and it is crucial to soil fertility and crop growth.

"Unless something is done, the scarcity of phosphorous will cause problems of a global dimension. As early as 2035 it is calculated that the demand for phosphorus map outpace the supply," says Dana Cordell, who presented her thesis at the Department of Thematic Studies - Water and Environmental Studies, Linköping University, Sweden on the implications of phosphorus scarcity on global food security.

Phosphorous is extracted from phosphate rock, a non-renewable resource that is used almost exclusively in agriculture. Two thirds of the world's resources are in China, Morocco, and Western Sahara.

"The demand for phosphorus has increased and prices soared by 800 percent between 2006 and 2008," says Dana Cordell.

Cordell maintains that the shortage of phosphorus in not simply due to a drop in the availability of phosphate ore. Many of the world's farmers do not have enough purchasing power to be able to afford and use phosphorus-based fertilizer, which means their soil is becoming depleted. What's more, phosphorus use in the food system from mine to field to fork is currently so inefficient that only one fifth of the phosphorus in the rock that is mined actually makes its way into our food.

"There is a lack of effective international governance to secure long-term access to phosphorus for food production," says Dana Cordell, who adds that the way phosphorus resources are handled needs to be improved.

Phosphorus needs to be applied and management in agriculture more efficiently, we need to eat more vegetarian food, and increase efficiency throughout the food chain. At the same time we need to recover and reuse a large part of the phosphorus that exists in crop residues, food waste, manures human faeces and other sources.

"If nothing is done, food production runs the risk of a hard landing in the future, including further fertilizer price increases, increasing environmental effects of pollution, energy and resource consumption, smaller harvests, reduced farmer livelihoods and reduced food security," says Dana Cordell.

The dissertation is titled The Story of Phosphorus: Sustainability Implications of Global Phosphorus Scarcity for Food Security.

Contact: Dana Cordell, dana.cordell@uts.edu.au

Pressofficer Birgitta Weibull, birgitta.weibull@liu.se;+46-13 282 911

Birgitta Weibull | idw
Further information:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-53430
http://www.vr.se

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>