Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt Water Irrigation: Study Shows It Works

17.12.2008
Take an arid field riddled with salty soil. Irrigate it with salty water. Plant a salt-tolerant grass along with a salt-sucking companion plant and what do you get? If you're a Brigham Young University research team, you raise a crop that successfully replaces corn as cattle feed.

Their research highlights the promise of using salty water to turn the salty soil in the world's arid regions into sustainable agricultural land.

Just published online in the journal Agriculture, Ecosystems and Environment ahead of the February issue, the study identified a plant that could thrive in yet-unusable lands near the coasts in much of the world. But don't throw away your salt-shakers - the beef from the cattle raised on it tastes just the same as the meat you're used to.

"It seems odd that salty soil and salty water could produce useful crops, but that's what this study showed," said Brent Nielsen, chair of BYU's microbiology and molecular biology department and corresponding author on the study. "It's exciting to share in work that directly benefits people who need to find more land in order to produce the food and income they need to survive."

The research team focused on a plant called Panicum turgidum that can grow in salty conditions. They measured its protein content and determined that it could be a suitable alternative to existing cattle feed. Then they tested its growth potential when irrigated with the salty water found in the area. They showed that Panicum grew so fast it could be harvested almost monthly. Overall, with limited fertilizer, they produced 60,000 kilograms per hectare during the yearlong study. Nielsen is confident that further studies that determine the best ratios of fertilizer will boost that number over 100,000 kilograms.

The researchers also used nature to preserve a sustainable growing environment. Panicum is a "salt excluder," meaning it survives salty conditions by keeping salt out of its system, which most other plants can't do. Although this allows Panicum to grow on salty water, the extra salt deposited by irrigation would render the soil too salty for even this hardy plant. So the researchers found that planting a companion crop that is a "salt accumulator" prevented the soil from getting too salty. The other plant sucked up the extra salt, then was harvested and burned and the ashes turned into soap. After the yearlong study, the levels of salt in the soil were virtually unchanged.

The Balochistan region of southern Pakistan, where Nielsen's collaborators conducted the test, is one of the world's driest places, and the underground water supply is "brackish" or salty because of its proximity to the Indian Ocean.

There is a strong demand for fodder to feed the cattle that are a main source of income in the region, so a crop that can grow successfully in these conditions "would have enormous impact on the quality of life in local communities," said Ajmal Khan, a professor at the University of Karachi, director of the Pakistani research team and first author on the paper.

The Panicum was fed to cattle, and the cattle grew as big or bigger as those fed corn, with similar amounts of protein in their meat.

As world populations grow and agricultural land is threatened, this new approach can open up more crops for both livestock and humans, Nielsen said.

"By being able to transfer production of animal feed closer to the coasts, where you have these salty soils, more useful agricultural lands can be free for vegetable and grain production for human consumption," he said.

Now that Nielsen and his research colleagues have established that their approach works, they are taking a closer look at how the plant uses "tricks of nature" to survive a salty environment. Then the researchers want to explore breeding those traits into more traditional food crops. Another possibility is discovering the genes that help it tolerate salt and genetically engineering other plants to do the same.

Nielsen's collaboration with Khan and his other Pakistani colleagues grew out of Khan's multiple stints at BYU under the guidance of now-retired BYU scientist Darrell Weber. Khan, whose wife Bilquees Gul earned her Ph.D. at BYU and is also a coauthor on the study, said he hopes to "continue 23 years of very useful association with BYU."

Michael Smart | Newswise Science News
Further information:
http://www.byu.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>