Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt Water Irrigation: Study Shows It Works

17.12.2008
Take an arid field riddled with salty soil. Irrigate it with salty water. Plant a salt-tolerant grass along with a salt-sucking companion plant and what do you get? If you're a Brigham Young University research team, you raise a crop that successfully replaces corn as cattle feed.

Their research highlights the promise of using salty water to turn the salty soil in the world's arid regions into sustainable agricultural land.

Just published online in the journal Agriculture, Ecosystems and Environment ahead of the February issue, the study identified a plant that could thrive in yet-unusable lands near the coasts in much of the world. But don't throw away your salt-shakers - the beef from the cattle raised on it tastes just the same as the meat you're used to.

"It seems odd that salty soil and salty water could produce useful crops, but that's what this study showed," said Brent Nielsen, chair of BYU's microbiology and molecular biology department and corresponding author on the study. "It's exciting to share in work that directly benefits people who need to find more land in order to produce the food and income they need to survive."

The research team focused on a plant called Panicum turgidum that can grow in salty conditions. They measured its protein content and determined that it could be a suitable alternative to existing cattle feed. Then they tested its growth potential when irrigated with the salty water found in the area. They showed that Panicum grew so fast it could be harvested almost monthly. Overall, with limited fertilizer, they produced 60,000 kilograms per hectare during the yearlong study. Nielsen is confident that further studies that determine the best ratios of fertilizer will boost that number over 100,000 kilograms.

The researchers also used nature to preserve a sustainable growing environment. Panicum is a "salt excluder," meaning it survives salty conditions by keeping salt out of its system, which most other plants can't do. Although this allows Panicum to grow on salty water, the extra salt deposited by irrigation would render the soil too salty for even this hardy plant. So the researchers found that planting a companion crop that is a "salt accumulator" prevented the soil from getting too salty. The other plant sucked up the extra salt, then was harvested and burned and the ashes turned into soap. After the yearlong study, the levels of salt in the soil were virtually unchanged.

The Balochistan region of southern Pakistan, where Nielsen's collaborators conducted the test, is one of the world's driest places, and the underground water supply is "brackish" or salty because of its proximity to the Indian Ocean.

There is a strong demand for fodder to feed the cattle that are a main source of income in the region, so a crop that can grow successfully in these conditions "would have enormous impact on the quality of life in local communities," said Ajmal Khan, a professor at the University of Karachi, director of the Pakistani research team and first author on the paper.

The Panicum was fed to cattle, and the cattle grew as big or bigger as those fed corn, with similar amounts of protein in their meat.

As world populations grow and agricultural land is threatened, this new approach can open up more crops for both livestock and humans, Nielsen said.

"By being able to transfer production of animal feed closer to the coasts, where you have these salty soils, more useful agricultural lands can be free for vegetable and grain production for human consumption," he said.

Now that Nielsen and his research colleagues have established that their approach works, they are taking a closer look at how the plant uses "tricks of nature" to survive a salty environment. Then the researchers want to explore breeding those traits into more traditional food crops. Another possibility is discovering the genes that help it tolerate salt and genetically engineering other plants to do the same.

Nielsen's collaboration with Khan and his other Pakistani colleagues grew out of Khan's multiple stints at BYU under the guidance of now-retired BYU scientist Darrell Weber. Khan, whose wife Bilquees Gul earned her Ph.D. at BYU and is also a coauthor on the study, said he hopes to "continue 23 years of very useful association with BYU."

Michael Smart | Newswise Science News
Further information:
http://www.byu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>