Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Restructuring natural resource majors

11.02.2011
Study investigates reasons for low enrollment in fishery and wildlife programs

A troublesome trend is occurring at colleges and universities around the country: fewer students are graduating with degrees in natural resource related degree programs. As a result, the number of qualified professionals to manage fish and wildlife programs is dwindling.

What is even more troubling is that nationally, the percentage of students enrolling in the major has increased. For reasons unknown, students have been leaving the natural resource degree path after enrollment to pursue other degrees. Finding cause for the steady decline in student interest was the focus of a Michigan State University study, published in the January 2011 issue of the Journal of Natural Resources and Life Sciences Education.

After interviewing students that had been enrolled in a fish and wildlife degree program, but had left to pursue another major at Michigan State, researchers identified seven categories for student departure. All the interviews were conducted in the same manner, using the same questions.

Engagement and employment were two themes identified by researchers. Previous research indicates students dislike lecture-based learning classes and prefer a more active learning environment. However, fish and wildlife students felt they had little to no access hands on experiences or field work. At the same time, many of the students believed that finding a job after graduation would be difficult, unless they received a masters or Ph.D.

Academic rigor and awareness of the major were also included in the seven categories. Students who left admitted they were not expecting face paced, advanced math and science pre-requisite courses, nor did they understand the relevancy of such courses. Even students that were academically competitive in high school found these courses to be a challenging task. Many students had not even heard of the major until visiting campus or while enrolling in classes. Others simply equated it to be being like a biologist on television, walking through nature and easily finding animals to study.

Although programmatic quality and experience as well as motivation ranked high on importance with students that left the major, almost none of the students being interviewed had any negative comments about the actual fish and wildlife courses. In fact, many were impressed with the close relationships formed with the professor and the students due to the majors smaller class sizes. While some students cited a past connection with the wilderness or experience in outdoor recreation as motivation for picking the major, leaving the major had not changed their views of the natural world.

"Understanding what motivates students to pursue natural resources careers has far reaching implications for both university programs and management and any attempt to address these issues is a step in the right direction regarding student retention. However, failure to address these issues will likely perpetuate the dwindling enrollments of natural resources programs," says Bjørn Wolter, one of the authors of the study.

Wolter hopes the study will motivate schools across the country to develop strategies aimed at increasing enrollment in natural resource related majors.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>