Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Revolutionary Biobased Resins From Crop Materials

12.08.2011
Several crops produced in the U.S. could play a significant role in biobased resins and coatings recently developed by researchers at North Dakota State University, Fargo. Scientists at NDSU have developed biobased resins that may prove to be a “game changer” in coatings and resin technology.

The NDSU researchers have developed a family of resins from renewable raw materials, creating resins that eliminate hazardous components such as formaldehyde and bisphenol-A. The resins are based on sucrose and vegetable oils, and can be varied to perform in many applications and industries, according to Dean Webster, professor in the NDSU Department of Coatings and Polymeric Materials. Webster’s research group includes NDSU graduate students Xiao Pan and T. J. Nelson, undergraduate student Adlina Paramarta and Partha Sengupta, former postdoctoral researcher at NDSU.

The resins developed by the NDSU research group can be made from from sugarbeets, plus oils from soybeans, flax and sunflowers. When cured, the patent-pending resins show:

- Significantly improved properties over current biobased materials and processes
- Mechanical properties comparable to petrochemical-based materials
- Dramatically increased renewable material content
“These NDSU-developed technologies achieve what few biobased materials have before,” said Webster. “They have vastly improved mechanical properties, reduced hazardous chemical content and are made from readily available materials and common processes. The technologies have the potential for significantly impacting biobased material markets.” The bio-renewable chemicals market is projected to reach $5 billion by 2015.

The new resins developed at NDSU could further reduce reliance on petrochemical-based materials, one of the main components in many coatings formulations. Dr. Webster’s research group found that the epoxidized sucrose ester resins they developed result in materials that are two- to-four times as functional as vegetable oil-based resins.

One novel ultraviolet light curable coating developed by Webster’s group cures approximately 10 times faster than existing UV-curable biobased coatings. Another in the family of biobased resins developed at NDSU exhibits properties that make it ideally suited for bio-composite materials, baking enamels and structural adhesives. Another resin demonstrates more hardness and resistance to solvents than petrochemical-based coatings.

“Interest in the use of renewable feedstocks in the synthesis of polymers is rapidly increasing, driven by consumer demand for ‘green’ products as well as the tightening of the supply of petrochemicals,” said Webster. “However, consumers are requiring that the biobased materials have physical properties that match or exceed current high performance materials.”

Laboratory research at NDSU has shown that the green technology resins developed at NDSU are far superior to existing biobased materials and comparable to petrochemical-based materials. The newly-developed resins could be used in a variety of settings including construction, architectural, biomedical, marine and electronics industries. The technology may have wide-ranging applications in areas where thermally cured materials are used, such as in protective coatings, structural adhesives, and composites. The resins are synthesized using raw materials, reagents and processes common to industry.

“They have the potential to provide a revolutionary impact in some applications replacing widely-used petrochemical-based epoxy compounds,” said Webster.

Funding for the biobased coatings research was provided by the USDA Cooperative State Research, Education, and Extension Service under grant number 2007-38202-18597. The United Soybean Board is sponsoring current biobased coatings research at NDSU. The base sucrose ester resins used in this research were provided by P&G Chemicals.

Webster’s research is among a broad-based research portfolio in renewable technologies at NDSU, with research funded by USDA, the National Science Foundation, U.S. Department of Energy and entities in North Dakota, including the North Dakota Renewable Energy Council and North Dakota Soybean Council.

Webster has been involved in polymer synthesis and structure-property relationships of coating binder systems for more than 20 years. He is receiving the prestigious Roy W. Tess Award in Coatings from the American Chemical Society on August 29, 2011, during the group’s annual meeting in Denver, Colo.

Dr. Webster has authored more than 75 peer-reviewed papers and publications and is credited with 11 patents (an additional 18 pending) on coatings related topics. He has won Roon Foundation Awards for the best paper in the 2003, 2004 and 2006 International Coatings Exposition (ICE) of the American Coatings Association.

Dr. Webster’s career in the coatings industry includes research and development in the Consumer Division of Sherwin-Williams in Chicago, Ill., and at Eastman Chemical Company. He received his Ph.D. in materials engineering science and his B.S. degree in chemistry at Virginia Polytechnic Institute and State University.

More information:
“High Biobased Content Epoxy Anhydride Thermosets from Epoxidized Sucrose Esters of Fatty Acids”
Biomacromolecules, 2011, 12 (6), pp 2416–2428 May 12, 2011
DOI: 10.1021/bm200549c http://pubs.acs.org/doi/abs/10.1021/bm200549c
“Novel biobased epoxy compounds: epoxidized sucrose esters of fatty acids”
Green Chemistry, 2011, 13, 965-975, February 2011
DOI: 10.1039/C0GC00882F
http://pubs.rsc.org/en/content/articlelanding/2011/gc/c0gc00882f/unauth
“Impact of Structure and Functionality of Core Polyol in Highly Functional Biobased Epoxy Resins”
Macromolecular Rapid Communications 20 JUN 2011
DOI: 10.1002/marc.201100215
http://onlinelibrary.wiley.com/doi/10.1002/marc.201100215/abstract
Dr. Dean Webster, 701.231.8709
Dean.webster@ndsu.edu

Dr. Dean Webster | Newswise Science News
Further information:
http://www.ndsu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>