Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Revolutionary Biobased Resins From Crop Materials

12.08.2011
Several crops produced in the U.S. could play a significant role in biobased resins and coatings recently developed by researchers at North Dakota State University, Fargo. Scientists at NDSU have developed biobased resins that may prove to be a “game changer” in coatings and resin technology.

The NDSU researchers have developed a family of resins from renewable raw materials, creating resins that eliminate hazardous components such as formaldehyde and bisphenol-A. The resins are based on sucrose and vegetable oils, and can be varied to perform in many applications and industries, according to Dean Webster, professor in the NDSU Department of Coatings and Polymeric Materials. Webster’s research group includes NDSU graduate students Xiao Pan and T. J. Nelson, undergraduate student Adlina Paramarta and Partha Sengupta, former postdoctoral researcher at NDSU.

The resins developed by the NDSU research group can be made from from sugarbeets, plus oils from soybeans, flax and sunflowers. When cured, the patent-pending resins show:

- Significantly improved properties over current biobased materials and processes
- Mechanical properties comparable to petrochemical-based materials
- Dramatically increased renewable material content
“These NDSU-developed technologies achieve what few biobased materials have before,” said Webster. “They have vastly improved mechanical properties, reduced hazardous chemical content and are made from readily available materials and common processes. The technologies have the potential for significantly impacting biobased material markets.” The bio-renewable chemicals market is projected to reach $5 billion by 2015.

The new resins developed at NDSU could further reduce reliance on petrochemical-based materials, one of the main components in many coatings formulations. Dr. Webster’s research group found that the epoxidized sucrose ester resins they developed result in materials that are two- to-four times as functional as vegetable oil-based resins.

One novel ultraviolet light curable coating developed by Webster’s group cures approximately 10 times faster than existing UV-curable biobased coatings. Another in the family of biobased resins developed at NDSU exhibits properties that make it ideally suited for bio-composite materials, baking enamels and structural adhesives. Another resin demonstrates more hardness and resistance to solvents than petrochemical-based coatings.

“Interest in the use of renewable feedstocks in the synthesis of polymers is rapidly increasing, driven by consumer demand for ‘green’ products as well as the tightening of the supply of petrochemicals,” said Webster. “However, consumers are requiring that the biobased materials have physical properties that match or exceed current high performance materials.”

Laboratory research at NDSU has shown that the green technology resins developed at NDSU are far superior to existing biobased materials and comparable to petrochemical-based materials. The newly-developed resins could be used in a variety of settings including construction, architectural, biomedical, marine and electronics industries. The technology may have wide-ranging applications in areas where thermally cured materials are used, such as in protective coatings, structural adhesives, and composites. The resins are synthesized using raw materials, reagents and processes common to industry.

“They have the potential to provide a revolutionary impact in some applications replacing widely-used petrochemical-based epoxy compounds,” said Webster.

Funding for the biobased coatings research was provided by the USDA Cooperative State Research, Education, and Extension Service under grant number 2007-38202-18597. The United Soybean Board is sponsoring current biobased coatings research at NDSU. The base sucrose ester resins used in this research were provided by P&G Chemicals.

Webster’s research is among a broad-based research portfolio in renewable technologies at NDSU, with research funded by USDA, the National Science Foundation, U.S. Department of Energy and entities in North Dakota, including the North Dakota Renewable Energy Council and North Dakota Soybean Council.

Webster has been involved in polymer synthesis and structure-property relationships of coating binder systems for more than 20 years. He is receiving the prestigious Roy W. Tess Award in Coatings from the American Chemical Society on August 29, 2011, during the group’s annual meeting in Denver, Colo.

Dr. Webster has authored more than 75 peer-reviewed papers and publications and is credited with 11 patents (an additional 18 pending) on coatings related topics. He has won Roon Foundation Awards for the best paper in the 2003, 2004 and 2006 International Coatings Exposition (ICE) of the American Coatings Association.

Dr. Webster’s career in the coatings industry includes research and development in the Consumer Division of Sherwin-Williams in Chicago, Ill., and at Eastman Chemical Company. He received his Ph.D. in materials engineering science and his B.S. degree in chemistry at Virginia Polytechnic Institute and State University.

More information:
“High Biobased Content Epoxy Anhydride Thermosets from Epoxidized Sucrose Esters of Fatty Acids”
Biomacromolecules, 2011, 12 (6), pp 2416–2428 May 12, 2011
DOI: 10.1021/bm200549c http://pubs.acs.org/doi/abs/10.1021/bm200549c
“Novel biobased epoxy compounds: epoxidized sucrose esters of fatty acids”
Green Chemistry, 2011, 13, 965-975, February 2011
DOI: 10.1039/C0GC00882F
http://pubs.rsc.org/en/content/articlelanding/2011/gc/c0gc00882f/unauth
“Impact of Structure and Functionality of Core Polyol in Highly Functional Biobased Epoxy Resins”
Macromolecular Rapid Communications 20 JUN 2011
DOI: 10.1002/marc.201100215
http://onlinelibrary.wiley.com/doi/10.1002/marc.201100215/abstract
Dr. Dean Webster, 701.231.8709
Dean.webster@ndsu.edu

Dr. Dean Webster | Newswise Science News
Further information:
http://www.ndsu.edu

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>