Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers achieve major breakthrough with water desalination system

15.07.2009
UCLA Engineering's new M3 helps cut costs, time in producing clean water

Concern over access to clean water is no longer just an issue for the developing world, as California faces its worst drought in recorded history.

According to state's Department of Water Resources, supplies in major reservoirs and many groundwater basins are well below average. Court-ordered restrictions on water deliveries have reduced supplies from the two largest water systems, and an outdated statewide water system can't keep up with population growth.

With these critical issues looming large, researchers at the UCLA Henry Samueli School of Engineering and Applied Science are working hard to help alleviate the state's water deficit with their new mini-mobile-modular (M3) "smart" water desalination and filtration system.

In designing and constructing new desalination plants, creating and testing pilot facilities is one of the most expensive and time-consuming steps. Traditionally, small yet very expensive stationary pilot plants are constructed to determine the feasibility of using available water as a source for a large-scale desalination plant. The M3 system helps cut both costs and time.

"Our M3 water desalination system provides an all-in-one mobile testing plant that can be used to test almost any water source," said Alex Bartman, a graduate student on the M3 team who helped to design the sensor networks and data acquisition computer hardware in the system. "The advantages of this type of system are that it can cut costs, and because it is mobile, only one M3 system needs to be built to test multiple sources. Also, it will give an extensive amount of information that can be used to design the larger-scale desalination plant."

The M3 demonstrated its effectiveness in a recent field study in the San Joaquin Valley in which it desalted agricultural drainage water that was nearly saturated with calcium sulfate salts, accomplishing this with just one reverse osmosis (RO) stage.

"In this specific field study by our team, in the first part of the reverse osmosis process, 65 percent of the water that was fed in was recovered as drinking water, or potable water," said Yoram Cohen, professor of chemical and biomolecular engineering and lead investigator on the team. "We can potentially go up to 95 percent recovery using an accelerated chemical demineralization process that was also developed here at UCLA. This first field study with the M3 was a major achievement and the first phase of our high-recovery RO process demonstration program."

Andi Rahardianto, a postdoctoral researcher on the team, said that the approach taken by the group is "a significant leap" from the standard practice in the industry of constructing different pilot plants, often from scratch, in order to evaluate and demonstrate the feasibility of water production from different source waters.

"We believe systems such as the M3 can help accelerate not only water technology development but also its adoption," he said.

In addition to its use as a pilot-scale testing unit, the M3, according to Bartman, could also be deployed to various locations and used to produce fresh water in emergency situations.

"The M3's 'smart' nature means it can autonomously adapt to almost any variation in source water, allowing the M3 system to operate in situations where traditional RO desalination systems would fail almost immediately," he said.

Though the system is compact enough to be transported anywhere in the back of a van, it can generate 6,000 gallons of drinking water per day from the sea or 8,000 to 9,000 gallons per day from brackish groundwater. By Cohen's estimate, that means producing enough drinking water daily for up to 6,000 to 12,000 people.

"The system measures in real-time water pH, temperature, turbidity and salinity," said Cohen, who is also the director of UCLA's Water Technology Research (WaTeR) Center, which is overseeing this project. "It can control a variety of process variables, including the precise measure of chemical additives to condition the water. All the valves are computer-controlled, so the system can adjust itself automatically. We can also see how much energy we're using, and in the software, we've also included various techniques for optimizing the system so that it can run with minimum energy consumption."

"The last time UCLA went into the field with its own newly built pilot system was in the '60s," Cohen said. "This new system is one-twentieth the size of what was built then, maybe even smaller, and can produce up to 30 percent more potable water. So to actually go back to the San Joaquin Valley with new advanced technology and be successful is quite an event."

Rahardianto said that the highly saline agricultural drainage wastewater in the San Joaquin Valley is one of the most difficult source waters to desalt.

"It has been a persistent issue for communities in the valley, one of California's most productive agricultural regions," he said. "While numerous attempts have been made to develop and test various desalting technologies since the 1960s, a practical, cost-effective solution has not yet been adopted, increasingly affecting the ability to sustain agricultural productivity in the region."

Cohen's team is working with water agencies and industries across the United States, as well as with the international community, and collaborates with research institutions such as Ben Gurion University in Israel, Victoria University in Australia and Tarragona University in Spain.

According to Stephen Gray, director of the Institute for Sustainability and Innovation at Victoria University, "the M3 system is a very significant improvement in desalination operations, allowing the membrane systems to effectively and quickly adapt to changes in water quality and to achieve high water recoveries. Such advances are of great importance to Australia and many other places in the world, where many communities are facing shortages in fresh water supplies and are becoming more reliant on saline water sources."

"We envision a future where many of these systems are deployed all around the world and their operation monitored from a central location," Bartman said. "The M3 could be used to rapidly test water sources so that desalination plants can be constructed to augment the diminishing fresh water supply. The system could also be used in the event of emergencies to provide a quick source for fresh drinking water where it is needed most."

"The work comes out of necessity, certainly for California, but there are also many places around the world that share our same challenges," Cohen said. "I feel we have an opportunity to make a real impact with our work. We're pointing out where advanced technology can make a difference. We're trying to find real solutions, and in this area, UCLA is certainly leading the way."

Creating the M3 was a unique multidisciplinary team project involving faculty and students from the chemical, electrical and civil engineering departments with expertise in control theory and optimization, process design/monitoring, computational fluid dynamics, thermodynamics, and software development.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to five multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

Wileen Wong Kromhout | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>