Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers achieve major breakthrough with water desalination system

15.07.2009
UCLA Engineering's new M3 helps cut costs, time in producing clean water

Concern over access to clean water is no longer just an issue for the developing world, as California faces its worst drought in recorded history.

According to state's Department of Water Resources, supplies in major reservoirs and many groundwater basins are well below average. Court-ordered restrictions on water deliveries have reduced supplies from the two largest water systems, and an outdated statewide water system can't keep up with population growth.

With these critical issues looming large, researchers at the UCLA Henry Samueli School of Engineering and Applied Science are working hard to help alleviate the state's water deficit with their new mini-mobile-modular (M3) "smart" water desalination and filtration system.

In designing and constructing new desalination plants, creating and testing pilot facilities is one of the most expensive and time-consuming steps. Traditionally, small yet very expensive stationary pilot plants are constructed to determine the feasibility of using available water as a source for a large-scale desalination plant. The M3 system helps cut both costs and time.

"Our M3 water desalination system provides an all-in-one mobile testing plant that can be used to test almost any water source," said Alex Bartman, a graduate student on the M3 team who helped to design the sensor networks and data acquisition computer hardware in the system. "The advantages of this type of system are that it can cut costs, and because it is mobile, only one M3 system needs to be built to test multiple sources. Also, it will give an extensive amount of information that can be used to design the larger-scale desalination plant."

The M3 demonstrated its effectiveness in a recent field study in the San Joaquin Valley in which it desalted agricultural drainage water that was nearly saturated with calcium sulfate salts, accomplishing this with just one reverse osmosis (RO) stage.

"In this specific field study by our team, in the first part of the reverse osmosis process, 65 percent of the water that was fed in was recovered as drinking water, or potable water," said Yoram Cohen, professor of chemical and biomolecular engineering and lead investigator on the team. "We can potentially go up to 95 percent recovery using an accelerated chemical demineralization process that was also developed here at UCLA. This first field study with the M3 was a major achievement and the first phase of our high-recovery RO process demonstration program."

Andi Rahardianto, a postdoctoral researcher on the team, said that the approach taken by the group is "a significant leap" from the standard practice in the industry of constructing different pilot plants, often from scratch, in order to evaluate and demonstrate the feasibility of water production from different source waters.

"We believe systems such as the M3 can help accelerate not only water technology development but also its adoption," he said.

In addition to its use as a pilot-scale testing unit, the M3, according to Bartman, could also be deployed to various locations and used to produce fresh water in emergency situations.

"The M3's 'smart' nature means it can autonomously adapt to almost any variation in source water, allowing the M3 system to operate in situations where traditional RO desalination systems would fail almost immediately," he said.

Though the system is compact enough to be transported anywhere in the back of a van, it can generate 6,000 gallons of drinking water per day from the sea or 8,000 to 9,000 gallons per day from brackish groundwater. By Cohen's estimate, that means producing enough drinking water daily for up to 6,000 to 12,000 people.

"The system measures in real-time water pH, temperature, turbidity and salinity," said Cohen, who is also the director of UCLA's Water Technology Research (WaTeR) Center, which is overseeing this project. "It can control a variety of process variables, including the precise measure of chemical additives to condition the water. All the valves are computer-controlled, so the system can adjust itself automatically. We can also see how much energy we're using, and in the software, we've also included various techniques for optimizing the system so that it can run with minimum energy consumption."

"The last time UCLA went into the field with its own newly built pilot system was in the '60s," Cohen said. "This new system is one-twentieth the size of what was built then, maybe even smaller, and can produce up to 30 percent more potable water. So to actually go back to the San Joaquin Valley with new advanced technology and be successful is quite an event."

Rahardianto said that the highly saline agricultural drainage wastewater in the San Joaquin Valley is one of the most difficult source waters to desalt.

"It has been a persistent issue for communities in the valley, one of California's most productive agricultural regions," he said. "While numerous attempts have been made to develop and test various desalting technologies since the 1960s, a practical, cost-effective solution has not yet been adopted, increasingly affecting the ability to sustain agricultural productivity in the region."

Cohen's team is working with water agencies and industries across the United States, as well as with the international community, and collaborates with research institutions such as Ben Gurion University in Israel, Victoria University in Australia and Tarragona University in Spain.

According to Stephen Gray, director of the Institute for Sustainability and Innovation at Victoria University, "the M3 system is a very significant improvement in desalination operations, allowing the membrane systems to effectively and quickly adapt to changes in water quality and to achieve high water recoveries. Such advances are of great importance to Australia and many other places in the world, where many communities are facing shortages in fresh water supplies and are becoming more reliant on saline water sources."

"We envision a future where many of these systems are deployed all around the world and their operation monitored from a central location," Bartman said. "The M3 could be used to rapidly test water sources so that desalination plants can be constructed to augment the diminishing fresh water supply. The system could also be used in the event of emergencies to provide a quick source for fresh drinking water where it is needed most."

"The work comes out of necessity, certainly for California, but there are also many places around the world that share our same challenges," Cohen said. "I feel we have an opportunity to make a real impact with our work. We're pointing out where advanced technology can make a difference. We're trying to find real solutions, and in this area, UCLA is certainly leading the way."

Creating the M3 was a unique multidisciplinary team project involving faculty and students from the chemical, electrical and civil engineering departments with expertise in control theory and optimization, process design/monitoring, computational fluid dynamics, thermodynamics, and software development.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to five multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

Wileen Wong Kromhout | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Agricultural and Forestry Science:

nachricht Crop achilles' heel costs farmers 10 percent of potential yield
24.01.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>