Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically modified eggplants (aubergines) shown to be 30% more productive

26.04.2002


Research, published in the online journal, BMC Biotechnology shows how researchers in Italy have used genetically modified eggplants made by the introduction of a gene that increases the level of the plant hormone indole acetic acid (IAA) to produce seedless fruits. Furthermore, these genetically modified eggplants are 30-35% more productive than conventional varieties in both greenhouse and field trials.

The public have a special liking for seedless fruits for two reasons, firstly seeds are often hard and unpalatable and secondly, since seed cavities are filled with fruit tissues instead of seeds, they get more fruit for their money. Consequently there is a great deal of interest in producing seedless fruit in agriculture.

Previous studies have shown that the application of IAA, to flower buds (the part of a plant from which fruits develop) can stimulate the development of fruit in the absence of fertilisation. This technique produces seedless fruit, but it is expensive because of the cost of the IAA and the labour required to treat the flower buds.



The researchers from Italy used genetic engineering to make eggplants produce seedless fruit spontaneously. This was done by inserting a gene, which codes for a molecule involved in the production of IAA that was only “turned on” in the flower buds. It is critical that IAA production was confined to the flower buds as this hormone is involved in a range of different processes in other parts of the plant such as the response of the plant to light and gravity. This specificity was achieved by combining DNA from two genes, one that contained the instructions of how to make the molecule that is needed to manufacture IAA and a second that contained the information that tells the plant to only produce this molecule in the cells located in the flower buds.

The researchers carried out three trials, two of which were conducted in greenhouses and one in an open field site in central Italy. They compared the weight of the eggplant harvest from the genetically engineered plants with eggplants that had not been genetically modified and found increased production of fruit in their genetically modified eggplants in all three trials.

From an economic standpoint the genetically modified eggplants have three major advantages over conventional varieties. Firstly, they produce more fruit with an overall increase in productivity of at least 30-35%. Secondly, the cultivation costs of producing seedless fruit was reduced and finally the genetically modified eggplants could produce fruit in conditions normally considered too cool for fruit production.



Gordon Fletcher | alphagalileo
Further information:
http://www.biomedcentral.com/1472-6750/2/4/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>