Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically modified eggplants (aubergines) shown to be 30% more productive

26.04.2002


Research, published in the online journal, BMC Biotechnology shows how researchers in Italy have used genetically modified eggplants made by the introduction of a gene that increases the level of the plant hormone indole acetic acid (IAA) to produce seedless fruits. Furthermore, these genetically modified eggplants are 30-35% more productive than conventional varieties in both greenhouse and field trials.

The public have a special liking for seedless fruits for two reasons, firstly seeds are often hard and unpalatable and secondly, since seed cavities are filled with fruit tissues instead of seeds, they get more fruit for their money. Consequently there is a great deal of interest in producing seedless fruit in agriculture.

Previous studies have shown that the application of IAA, to flower buds (the part of a plant from which fruits develop) can stimulate the development of fruit in the absence of fertilisation. This technique produces seedless fruit, but it is expensive because of the cost of the IAA and the labour required to treat the flower buds.



The researchers from Italy used genetic engineering to make eggplants produce seedless fruit spontaneously. This was done by inserting a gene, which codes for a molecule involved in the production of IAA that was only “turned on” in the flower buds. It is critical that IAA production was confined to the flower buds as this hormone is involved in a range of different processes in other parts of the plant such as the response of the plant to light and gravity. This specificity was achieved by combining DNA from two genes, one that contained the instructions of how to make the molecule that is needed to manufacture IAA and a second that contained the information that tells the plant to only produce this molecule in the cells located in the flower buds.

The researchers carried out three trials, two of which were conducted in greenhouses and one in an open field site in central Italy. They compared the weight of the eggplant harvest from the genetically engineered plants with eggplants that had not been genetically modified and found increased production of fruit in their genetically modified eggplants in all three trials.

From an economic standpoint the genetically modified eggplants have three major advantages over conventional varieties. Firstly, they produce more fruit with an overall increase in productivity of at least 30-35%. Secondly, the cultivation costs of producing seedless fruit was reduced and finally the genetically modified eggplants could produce fruit in conditions normally considered too cool for fruit production.



Gordon Fletcher | alphagalileo
Further information:
http://www.biomedcentral.com/1472-6750/2/4/

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>