Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding, combating foodborne pathogens E. coli 0157 and salmonella

17.10.2007
Understanding the ecology of two dangerous foodborne pathogens and devising ways to combat them is a big job. That's why Kansas State University has a team of seven researchers and six collaborators taking on E. coli 0157 and salmonella.

"It's becoming more and more difficult to study these pathogens because you have to be a jack of all trades," said T.G. Nagaraja, professor of diagnostic medicine pathobiology at K-State's College of Veterinary Medicine.

Nagaraja leads a research group that includes epidemiologists, molecular biologists, production animal medicine experts and feedlot nutritionists.

For the past five years, Nagaraja has been leading the team on an E. coli 0157 research project that goes back more than a decade at K-State. E. coli 0157 doesn't cause problems for livestock, but it's zoonotic -- that is, it can be passed on to humans through the food supply.

"Our goals are fairly simple," Nagaraja said. "We want to understand the ecology of E. coli 0157 in cattle and come up with practical, on-farm intervention strategies."

The rest of the research team includes Sanjeev Narayanan, assistant professor of pathology and molecular biology; Richard Oberst, professor of microbiology; David Renter, assistant professor in epidemiology; Mike Sanderson, associate professor of epidemiology and production animal medicine; Daniel Thomson, assistant professor of feedlot production medicine; and Ludek Zurek, associate professor of entomology.

Collaborators include K-State's Mike Apley, associate professor of production animal medicine; Jim Drouillard, professor of feedlot nutrition; Larry Hollis, professor in animal sciences and industry; Justin Kastner, assistant professor of food safety and security; and Abby Nutsch, assistant professor of food microbiology; as well as Kelly Lechtenberg, director of Midwest Veterinary Research Inc. in Oakland, Neb.

The research team is working to answer questions like why some cattle have E. coli 0157 and some don't, and why some shed the bacteria for a longer time or at higher levels than others.

The K-State researchers also want to understand why the presence of 0157 is higher during some months than in others, and why animals under stress shed more of the bacteria than other animals.

"If we find out answers to these questions, we can come up with intervention strategies," Nagaraja said. "The first part of the research is to look at the ecology, and the second part is to develop tests and practical intervention strategies."

For instance, Thomson is doing research with a company in Minnesota on a vaccine with antibodies that prevent the bacteria from getting iron, which they need to live. All three studies have shown a reduction in the prevalence of 0157 when the vaccine is used, Nagaraja said.

He also said that researchers are looking at what changes they could make in cattle diets that would make the animals' digestive systems less hospitable to 0157. Because the bacteria seem to congregate in the hindgut, Nagaraja said feeding cattle a diet that will reach the hindgut and produce acid will be effective in killing 0157. He also said that probiotics -- beneficial bacteria, like what humans can get though eating yogurt -- can reduce 0157 because they out compete the bacteria for resources.

Salmonella, one of the most common causes of gastroenteritis and which is spread through contaminated ground beef and manure-fertilized produce, also harms livestock. It causes bloody diarrhea in feedlot cattle and causes dairy cattle to abort. Renter's work centers on finding out why feedlot cattle that are being treated for other infections may show a higher rate of salmonella than healthy cattle. To find out the serotype of the salmonella, veterinarians and researchers have to send samples to a laboratory in Iowa. Narayanan is working to develop a rapid, molecular-based testing method that is more accessible.

Nagaraja said that in the future the research team will pursue the goal of eliminating 0157 and salmonella. Although 0157 also is spread by grain-eating birds that carry the bacteria from one feedlot to another, it poses less of a challenge than salmonella. Nagaraja said that rodents and other animals that live in barns carry salmonella, so the research team hopes to at least reduce its prevalence. The research team also is studying antimicrobial resistance with the hopes of preventing foodborne pathogens from becoming more dangerous to humans and animals.

"Salmonella is notorious for becoming resistant to multiple antibiotics," Nagaraja said. "Also, it can transfer the genes that cause antibacterial resistance to other bacteria. Our primary objective is to develop a synergistic program to evaluate the role of the cattle industry on the prevalence, amplification and spread of antimicrobial resistance."

T.G. Nagaraja | EurekAlert!
Further information:
http://www.vet.k-state.edu

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>