Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OSU ‘sweet’ biofuels research goes down on the farm

30.08.2007
Oklahoma State University’s sorghum-related biofuels research is taking a localized approach, with the aim of making possible the effective production of ethanol in the farmer’s own field.

Sweet sorghum can be grown throughout temperate climate zones of the United States, including Oklahoma. It provides high biomass yield with low irrigation and fertilizer requirements. Corn ethanol, in contrast, requires significant amounts of water for growing and processing.

Best of all, producing ethanol from sweet sorghum is relatively easy, said Danielle Bellmer, biosystems engineer with the OSU Division of Agricultural Sciences and Natural Resources’ Robert M. Kerr Food and Agricultural Products Center.

“Just press the juice from the stalk, add yeast, allow fermentation to take place and you have ethanol,” Bellmer said. “Unfortunately, the simple sugars derived from sweet sorghum have to be fermented immediately.”

Throw in the expense of constructing and operating a central processing facility that would only operate the four to five months of the year when sorghum would be available in Oklahoma and the challenge multiplies.

The beginnings of a possible solution presented itself when entrepreneur Lee McClune, president of Sorganol Production Co. Inc., approached FAPC scientists seeking their assistance in testing his newly designed field harvester capable of pressing and collecting juice from sweet sorghum. His proposed Sorganol process involved using the harvester, large storage bladders for fermentation and a mobile distillation unit for ethanol purification.

OSU’s initial involvement in the project was to look at the feasibility of fermenting the juice in the field.

“We’re examining such things as juice extraction efficiency, whether or not pH (acidity) or nutrient adjustment of the juice is needed and various environmental factors,” Bellmer said.

The goal is to make production of ethanol from sweet sorghum economically viable by using an in-field processing system that minimizes transportation costs and capital investment.

Equipment such as the harvester and other technology could be owned individually or cooperatively with a number of producers sharing and possibly helping one another process ethanol from sweet sorghum.

In Oklahoma, the potential processing scenario might look like this: Plant sweet sorghum around mid-April, and then stagger plantings for two to three months. This would provide a harvest window of August through November.

“Ethanol yields in Oklahoma could range from 300 gallons to 600 gallons per acre, depending on biomass yield, sugar content and juice expression efficiency,” said Chad Godsey, biofuels team member and OSU Cooperative Extension cropping systems specialist with the department of plant and soil sciences.

Godsey said the team is working to determine the maximum possible harvest window for sweet sorghum in Oklahoma.

“Obviously, the longer the harvest window, the more ethanol state farmers will be able to produce,” he said.

OSU Biofuels Team researchers also are studying environmental parameters that may affect the feasibility of on-farm fermentation. A producer must be able to ferment the juice in the field during Oklahoma’s harvest season for sweet sorghum, which occurs in the fall when temperature extremes are highly possible.

“Temperature can speed up, slow down or derail the fermentation process,” Godsey said.

Weather data for Oklahoma indicate an average low temperature of about 44 degrees Fahrenheit and an average high temperature of approximately 98 degrees Fahrenheit during the August-through-October period over the past 10 years.

Six test plot sites are maintained at Oklahoma Agricultural Experiment Station facilities across the state, allowing OSU scientists to conduct research on sweet sorghum under local conditions.

“We would like to do with sweet sorghum what the Brazilians have done with sugar cane: In Brazil, sugar cane ethanol provides a large percentage of their fuel needs,” Bellmer said.

The idea of using sweet sorghum for commercial ethanol production is not new. The reason sweet sorghum is not as popular as corn in terms of being a source of ethanol in the United States has been the need to ferment its simple sugars immediately and the high costs associated with a central processing plant that is operated only seasonally.

“By determining a process by which agricultural producers can create ethanol in the field from sweet sorghum, that barrier is removed,” Bellmer said. “Producers will then have a much higher value product to sell.”

Donald Stotts | EurekAlert!
Further information:
http://www.okstate.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>