Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New biomass research project could help people in water scarce regions of India

06.06.2007
Engineers from Aston University in Birmingham are part of a national consortium to investigate enhanced biomass production and energy conversion for use in water-scarce areas of India.

The £859,193 project is funded by the Engineering & Physical Sciences Research Council (EPSRC) and could improve the living conditions of many Indian people as well as having long-term benefits to academic research.

Dr Philip Davies and Dr Jason Hill from Aston will begin work on the project in June and it will last for 36 months. They will join colleagues from the universities of Warwick, Leeds, Bristol and Coventry with assistance from WRc (previously called the Water Research Centre) and in close collaboration with IIT-Delhi.

The overall aim is to provide improved means of cultivating biomass resources in water-scarce areas of Northern India and of locally converting them into useful energy services such as cooling for food preservation and ice production, electricity and applications using low-temperature heat such as food processing. There will be a high emphasis on the teaching of practical skills to local people.

Principal Investigator Dr Davies explained: ‘The provision of modern energy services is an essential part of alleviating poverty in India and the developing world.

‘Traditionally, biomass from trees and shrubs has been and remains the principal source of energy for many people and it is likely to be a major energy resource of the future. However, the distributed and low-grade nature of the biomass fuel makes it essential to introduce more effective means of production and use.

‘Biomass production requires water and land which are also needed for other purposes. Our approach therefore is to introduce technologies having multiple benefits. We will set up a plantation in the village of Manpura (which is an isolated community in Rajasthan) to grow crops which can yield not only energy but also food, fodder, soap and botanical pesticides.

‘In Faridabad (which is a small town in Haryana state) we will grow energy crops and at the same time treat sewage. A small scale tri-generation system, fuelled by biomass, will be developed to provide electricity, ice for food preservation, heat for drying crops and/or pure water for drinking.’

The development and transfer of these technologies makes use of a great deal of expertise already developed in the UK.*

The lack of basic services requiring energy and water contributes to the pressures on rural people in India to abandon their way of life and join the drift towards the country’s growing cities.

‘Often they end up living in slum conditions on the edge of escalating property markets, leaving behind them a kind of rural wasteland’, continued Dr Davies. ‘We would like to counter this trend by setting up models of livelihood and local enterprise based on sustainable land use coupled with technology for the local provision of energy and related services.

‘A key element of the work will be the identification of socio-economic success factors in the project through interviews, focus groups and observations in India, facilitated by our partners at IIT-Delhi.

‘This socio-economic study will measure the project’s success in the areas where it has been implemented. We will also carry out modelling, taking into account both the physical systems (for example engines or refrigerators) and the human participants. This modelling will enable us to investigate a variety of future scenarios in which the technologies could be introduced.’

Professor Julia King, Vice-Chancellor of Aston University, said: ‘Aston’s involvement in this project is another excellent example of how our researchers’ engineering knowledge base is being translated into practical solutions for improving people’s lives. I am delighted that the University is involved and look forward to receiving news of the project’s progress.’

Sally Hoban | alfa
Further information:
http://www.aston.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>