Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New biomass research project could help people in water scarce regions of India

06.06.2007
Engineers from Aston University in Birmingham are part of a national consortium to investigate enhanced biomass production and energy conversion for use in water-scarce areas of India.

The £859,193 project is funded by the Engineering & Physical Sciences Research Council (EPSRC) and could improve the living conditions of many Indian people as well as having long-term benefits to academic research.

Dr Philip Davies and Dr Jason Hill from Aston will begin work on the project in June and it will last for 36 months. They will join colleagues from the universities of Warwick, Leeds, Bristol and Coventry with assistance from WRc (previously called the Water Research Centre) and in close collaboration with IIT-Delhi.

The overall aim is to provide improved means of cultivating biomass resources in water-scarce areas of Northern India and of locally converting them into useful energy services such as cooling for food preservation and ice production, electricity and applications using low-temperature heat such as food processing. There will be a high emphasis on the teaching of practical skills to local people.

Principal Investigator Dr Davies explained: ‘The provision of modern energy services is an essential part of alleviating poverty in India and the developing world.

‘Traditionally, biomass from trees and shrubs has been and remains the principal source of energy for many people and it is likely to be a major energy resource of the future. However, the distributed and low-grade nature of the biomass fuel makes it essential to introduce more effective means of production and use.

‘Biomass production requires water and land which are also needed for other purposes. Our approach therefore is to introduce technologies having multiple benefits. We will set up a plantation in the village of Manpura (which is an isolated community in Rajasthan) to grow crops which can yield not only energy but also food, fodder, soap and botanical pesticides.

‘In Faridabad (which is a small town in Haryana state) we will grow energy crops and at the same time treat sewage. A small scale tri-generation system, fuelled by biomass, will be developed to provide electricity, ice for food preservation, heat for drying crops and/or pure water for drinking.’

The development and transfer of these technologies makes use of a great deal of expertise already developed in the UK.*

The lack of basic services requiring energy and water contributes to the pressures on rural people in India to abandon their way of life and join the drift towards the country’s growing cities.

‘Often they end up living in slum conditions on the edge of escalating property markets, leaving behind them a kind of rural wasteland’, continued Dr Davies. ‘We would like to counter this trend by setting up models of livelihood and local enterprise based on sustainable land use coupled with technology for the local provision of energy and related services.

‘A key element of the work will be the identification of socio-economic success factors in the project through interviews, focus groups and observations in India, facilitated by our partners at IIT-Delhi.

‘This socio-economic study will measure the project’s success in the areas where it has been implemented. We will also carry out modelling, taking into account both the physical systems (for example engines or refrigerators) and the human participants. This modelling will enable us to investigate a variety of future scenarios in which the technologies could be introduced.’

Professor Julia King, Vice-Chancellor of Aston University, said: ‘Aston’s involvement in this project is another excellent example of how our researchers’ engineering knowledge base is being translated into practical solutions for improving people’s lives. I am delighted that the University is involved and look forward to receiving news of the project’s progress.’

Sally Hoban | alfa
Further information:
http://www.aston.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>