Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the white wine difference

07.03.2007
A CSIRO research team has pinpointed the genetic difference between red (or black) and white grapes – a discovery which could lead to the production of new varieties of grapes and ultimately new wines.

While white wine has ancient origins – residue of white wine was found in the tomb of the Egyptian king, Tutankhamun – researchers know that the ancestors of modern grapes were all red.

What they did not know was how the change from red to white berries came about.

CSIRO researchers, working in the Cooperative Research Centre for Viticulture, have found the genetic mutations that occurred thousands of years ago to give us white grapes.

“A complete understanding of the two genes that control grape colour will also be useful in a practical sense.”“Researchers in Japan have shown that one particular gene, which controls production of anthocyanin, the red pigment in grape skins, was mutated in white varieties,” says team leader Dr Mandy Walker from CSIRO Plant Industry’s Adelaide laboratory.

“By closely studying part of a red grapevine chromosome carrying the genes for red colour and comparing it to a white variety chromosome, we found a second similar gene involved in the grape colour pathway that was also different in white varieties.

“Our research suggests that extremely rare and independent mutations in two genes produced a single white grapevine that was the parent of almost all of the world’s white grape varieties. If only one gene had been mutated, most grapes would still be red and we would not have the more than 3000 white grape cultivars available today.”

A complete understanding of the two genes that control grape colour will also be useful in a practical sense.

“We have been able to produce a marker that can be used in future vine breeding to predict berry colour in seedlings, without waiting two to three years for them to grow into mature vines and produce fruit. The marker gives us a highly accurate way of selecting for berry colour traits when breeding grapevines,” Dr Walker says.

“The discovery also has great potential for producing interesting and exciting new varieties with novel colours in the future, through genetic modification. One of the areas of future study is to determine if these two genes control the amount of red pigment made, so the colour of grapes can be improved.”

This research was conducted by the CRC for Viticulture and CSIRO and is supported by the Grape and Wine Research and Development Corporation.

Tony Steeper | EurekAlert!
Further information:
http://www.csiro.au

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>