Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mellow in Europe, crazy in America

28.02.2007
UVM study shows new way that benign plants become invasive

Reed canarygrass is a bit like some people on vacation. At home, they stay on their side of the fence, and speak nicely with the neighbors. But jet them into Las Vegas and by week's end they are shoving other people out of the way in the casino.

Similarly, the reed canarygrass is well-settled in its native European range, not pushing out other species or expanding its terrain. But, introduced into the United States, it's running amok ecologically, choking out native plants in wetlands. Once praised as a fine forage crop, the grass is now considered an invasive pest in about ten states and its range is growing.

Studying this grass as a model, Jane Molofsky, associate professor of plant biology at the University of Vermont and her French colleague, Sebastien Lavergne, have discovered a novel mechanism to explain the surprising conversion of some plant species from quiet neighbor at home into expansive bully in new territory.

As they report in the February 27, 2007, edition of the Proceedings of the National Academy of Sciences (PNAS), the invasive power of this grass, brought to America in the mid-19th century and many times thereafter, comes not from any one individual plant, but from this history of multiple introductions from different regions of Europe.

Over decades, US farmers and others have planted the grass as livestock feed, for erosion control, and for wastewater treatment—with plants taken from places as far apart as France, the Czech Republic and Finland.

These multiple introductions, and subsequent interbreeding, create a kind of biological stacked deck: drawing on genetic variety from across the European continent, new strains have emerged in the US with higher genetic diversity and more potentially advantageous qualities than their species brethren across the Atlantic.

"It's not that you're taking the ones in France and moving them to the US and they're suddenly invasive," Molofsky said, looking over a green swath of reed canarygrass growing in a UVM greenhouse, "its that you move some plants, and then you move some from somewhere else and they recombine here to form something better, genetic superstars."

The result: in America, reed canarygrass has developed traits, like faster emergence in the spring and larger root biomass, that allow it to become a rapid colonizer. In short, the grass is still the same species, but it has quickly evolved to be invasive.

And this has significance far beyond the headache of reed canarygrass. A "fundamental implication of our paper is that not only do invasive species evolve but we show that they can evolve extremely rapidly," Sebastian Lavergne notes, striking a blow at the conventional view that evolution occurs at very slow rates.

"If you drive around in Vermont you'll see that it has taken over whole areas of wetlands, and out West it clogs waterways and takes over irrigation ditches," says Molofsky. "It's a big problem in Alaska: it's preventing salmon runs, its changing habitats. It's becoming a larger and larger problem."

Molofsky's greenhouse- and field-based study, funded by the US Department of Agriculture, shows why. Thanks to a large network of European collaborators, she and her students collected plants from the both the center and edge of the native range in Europe, getting individuals from southern France and the Czech Republic. They also collected from the invasive range center in Vermont and the edge in North Carolina.

They discovered that the grass in its native Europe show a typical decrease of genetic diversity at the edge of the range, constraining its ability to adapt and expand into new conditions. But in the US invasive range, they found a different story. There, the invasive plants thrive on infusions of Europe-wide genetic material, allowing them to quickly adapt to new conditions and continue their quiet march into new fields and wetlands.

"The problem is that these invasive species at the range margin are maintaining all of the genetic diversity which represents a substrate for future evolution," Molofsky says, "so when climates begin to change we expect that some individuals from those populations will be able to grow in new conditions. But it is unlikely that native species have maintained enough genetic variability to move with rapid climate changes." Invaders persist, natives expire.

For land managers, farmers, nursery owners and others the implications of this study are also weighty. It seems likely that a considerable number of horticultural and agricultural plants that currently seem benign could become invasive by the same mechanism that affected reed canarygrass, and that climate change will increase the intensity of this problem.

"If people had stopped introducing the grass, we might not have this problem now," Molofsky said, "but it seemed fine then."

Other plants may soon follow this path. "Some in the nursery industry argue, 'well, we can have barberry here, because its not invasive in Vermont,' My point is, 'yes, not now, but keep introducing it and let it mix and with climate change we'll have it later,'" Molofsky says. "Just keep planting it out there, and 20 years from now when it's 2 degrees warmer you're going to see it in the forest."

"Some people are thinking of species as static, like they can't evolve," she says. Her study shows otherwise.

Joshua Brown | EurekAlert!
Further information:
http://www.pnas.org/
http://www.uvm.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>