Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy Gardening More Than Hobby for Future Moon, Mars Residents

10.10.2006
Long periods of total darkness and poor soil needn't stop an avid gardener – at least not one who's willing to go out of this world to grow plants.

Lush lettuce is growing by galactic measure in cylinders designed by Texas Agricultural Experiment Station researchers to mimic conditions on the moon and Mars.

"We're to the point now that we are confident with the systems we have developed, though it may not ultimately look like this (lab model)," said Dr. Fred Davies, Texas Agricultural Experiment Station horticulturist.

The research, part of the National Air and Space Administration's "Salad Bowl" project, is unique in that university-based scientists are tasked with finding a way to produce food in spatial conditions unparalleled on Earth.

Two certainties make this work important, the researchers believe: Humans will continue to explore uncharted expanses of the universe, and where humans go, food is a must.

"Exploration is part of our blood. Ultimately, we will start to inhabit on lunar and Martian surfaces in the near future," Davies said.

For now, food is transported in shuttles in quantities to last a space trip. Food also is taken to the International Space Station for the three people who work there in six-month stints.

Astronaut fare has gone from "bite-sized foods suitable for eating with one's fingers, and pureed foods, squeezed directly into the mouth from flexible metal toothpaste-type tubes" to some 200 different menu selections now including fresh tortillas and chicken fajita meat served on more appealing food trays, according to NASA food nutritionists.

But ultimately, for people to live in space for longer periods, self-sustaining food production would be vital, Davies noted.

Enter agriculture. The age-old profession is much on the minds of space exploration scientists.

Davies said green produce in space has both nutritional and psychological benefits. While leafy lettuce may provide humans with essential nutrients such as vitamin A, it also provides a welcomed fresh texture for astronauts who quickly get their fill of reconstituted food.

"A part that is important is the psychology of eating something that is green, smells like something you are used to on Earth, that has some texture to it and some freshness," Davies said.

Developing equipment to hurl humans into space has been less a challenge for engineers than finding ways to grow food. Mainly, all the earthly conditions that make plants thrive either don't exist or are vastly different in space.

The moon, for example, has no atmospheric pressure (vital for the development of clouds and rainfall) and only one-sixth the gravity of Earth. Its days, or period of light, last the equivalent of about a month on Earth and are followed by the equivalent of two weeks of darkness, Davies pointed out. And it has no carbon, which is essential for photosynthesis.

Mars, on the other hand, has an atmosphere that is about 95 percent carbon dioxide and an atmospheric pressure one-hundredth that of Earth's. And while a Martian day is a little longer than earth's 24-hour period, there is less available light for plant growth, the researcher noted.

To figure out how to grow plants in space, scientists first had to toss out what is known about plant production. They also had to design, build and operate growing chambers to work under space-like conditions. That meant developing chambers that would work in low pressure and provide plants with what's needed to photosynthesize, or grow and yield adequate quantities of food.

Thus far, their research has shown that the plants are doing better in the low-pressure conditions.

"The advantage to low pressure means we have to have less materials which means less cost," said Dr. Ron Lacey, Experiment Station agricultural engineer. "But to create a system for plants to grow in low pressure is very challenging."

Lacey said previous research on such systems had numerous issues with leakage – perhaps leaking the whole volume of air in a day.

"But we were able to create a very tight system that only leak about 1.5 percent of its volume per day or less," Lacey said, "and we see some very interesting things going on (with plant growth)."

"We have found that the plants grow better in the low pressure, and also that the gas ethylene has a big effect on plant growth," said Dr. Chuan He, Experiment Station researcher who plants, harvests and analyzes the lettuce for quality. Plants under low pressure produce less ethylene and use-up less carbohydrates at night (lower dark-period respiration), which produces larger heads of lettuce.

He, who said tending plants on Mars is his wished-for occupation, has sampled the product of his labors.

"The lettuce actually tastes quite good," He said.

Davies noted that plants also are useful for producing oxygen and reducing carbon dioxide, both important factors for humans.

"It may be that these plants are grown below ground in special growth chambers on Mars and the moon," Davies said. "They are looking at ways to be able to catch and store light on the moon and then be able to use that light later on."

More information about the project is available at http://aggie-horticulture.tamu.edu/faculty/davies/research/nasa.html .

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu
http://aggie-horticulture.tamu.edu/faculty/davies/research/nasa.html

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>