Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy Gardening More Than Hobby for Future Moon, Mars Residents

10.10.2006
Long periods of total darkness and poor soil needn't stop an avid gardener – at least not one who's willing to go out of this world to grow plants.

Lush lettuce is growing by galactic measure in cylinders designed by Texas Agricultural Experiment Station researchers to mimic conditions on the moon and Mars.

"We're to the point now that we are confident with the systems we have developed, though it may not ultimately look like this (lab model)," said Dr. Fred Davies, Texas Agricultural Experiment Station horticulturist.

The research, part of the National Air and Space Administration's "Salad Bowl" project, is unique in that university-based scientists are tasked with finding a way to produce food in spatial conditions unparalleled on Earth.

Two certainties make this work important, the researchers believe: Humans will continue to explore uncharted expanses of the universe, and where humans go, food is a must.

"Exploration is part of our blood. Ultimately, we will start to inhabit on lunar and Martian surfaces in the near future," Davies said.

For now, food is transported in shuttles in quantities to last a space trip. Food also is taken to the International Space Station for the three people who work there in six-month stints.

Astronaut fare has gone from "bite-sized foods suitable for eating with one's fingers, and pureed foods, squeezed directly into the mouth from flexible metal toothpaste-type tubes" to some 200 different menu selections now including fresh tortillas and chicken fajita meat served on more appealing food trays, according to NASA food nutritionists.

But ultimately, for people to live in space for longer periods, self-sustaining food production would be vital, Davies noted.

Enter agriculture. The age-old profession is much on the minds of space exploration scientists.

Davies said green produce in space has both nutritional and psychological benefits. While leafy lettuce may provide humans with essential nutrients such as vitamin A, it also provides a welcomed fresh texture for astronauts who quickly get their fill of reconstituted food.

"A part that is important is the psychology of eating something that is green, smells like something you are used to on Earth, that has some texture to it and some freshness," Davies said.

Developing equipment to hurl humans into space has been less a challenge for engineers than finding ways to grow food. Mainly, all the earthly conditions that make plants thrive either don't exist or are vastly different in space.

The moon, for example, has no atmospheric pressure (vital for the development of clouds and rainfall) and only one-sixth the gravity of Earth. Its days, or period of light, last the equivalent of about a month on Earth and are followed by the equivalent of two weeks of darkness, Davies pointed out. And it has no carbon, which is essential for photosynthesis.

Mars, on the other hand, has an atmosphere that is about 95 percent carbon dioxide and an atmospheric pressure one-hundredth that of Earth's. And while a Martian day is a little longer than earth's 24-hour period, there is less available light for plant growth, the researcher noted.

To figure out how to grow plants in space, scientists first had to toss out what is known about plant production. They also had to design, build and operate growing chambers to work under space-like conditions. That meant developing chambers that would work in low pressure and provide plants with what's needed to photosynthesize, or grow and yield adequate quantities of food.

Thus far, their research has shown that the plants are doing better in the low-pressure conditions.

"The advantage to low pressure means we have to have less materials which means less cost," said Dr. Ron Lacey, Experiment Station agricultural engineer. "But to create a system for plants to grow in low pressure is very challenging."

Lacey said previous research on such systems had numerous issues with leakage – perhaps leaking the whole volume of air in a day.

"But we were able to create a very tight system that only leak about 1.5 percent of its volume per day or less," Lacey said, "and we see some very interesting things going on (with plant growth)."

"We have found that the plants grow better in the low pressure, and also that the gas ethylene has a big effect on plant growth," said Dr. Chuan He, Experiment Station researcher who plants, harvests and analyzes the lettuce for quality. Plants under low pressure produce less ethylene and use-up less carbohydrates at night (lower dark-period respiration), which produces larger heads of lettuce.

He, who said tending plants on Mars is his wished-for occupation, has sampled the product of his labors.

"The lettuce actually tastes quite good," He said.

Davies noted that plants also are useful for producing oxygen and reducing carbon dioxide, both important factors for humans.

"It may be that these plants are grown below ground in special growth chambers on Mars and the moon," Davies said. "They are looking at ways to be able to catch and store light on the moon and then be able to use that light later on."

More information about the project is available at http://aggie-horticulture.tamu.edu/faculty/davies/research/nasa.html .

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu
http://aggie-horticulture.tamu.edu/faculty/davies/research/nasa.html

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>