Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas Researchers Casting for Answers to Stop Alga Problem in Texas Lakes

10.10.2006
Texas researchers are hoping for a golden opportunity to reel in a solution to stop a toxic algae that has killed millions of fish in the state's lakes.

A team of Texas Agricultural Experiment Station fishery scientists this week took water samples from Lake Whitney for a new round of experiments. They are hoping for a breakthrough before winter when the golden algae typically blooms and kills perhaps hundreds of thousands of fish in one occurrence.

"If you have repeated blooms in the lakes, of this magnitude, eventually you'll destroy those recreational fisheries, for sure," said Dr. Daniel Roelke, Experiment Station aquatic ecology scientist, who spearheaded his team's sampling. "And not only that, (if) these blooms get into the state hatcheries, anything that is currently being raised at that hatchery, dies. This is a big problem and greater attention needs to be focused on this problem."

Roelke is collaborating with Dr. James Grover from the University of Texas at Arlington, Dr. Brian Brooks from Baylor University and Dr. Richard Kiesling from the U.S. Geological Survey as a multi-agency team seeking answers for the problem.

Golden alga, Prymnesium parvum, was first reported in inland Texas waters along the Pecos River in 1985. After the initial find, no occurrence was documented until 2001, Roelke said.

That year, algae blooms caused massive fish deaths in the Dundee State Fish Hatchery, about 20 miles west of Wichita Falls, according to Texas Parks and Wildlife Department biologists. "Bloom" is the term biologists use to describe a huge increase in the number of these one-celled plants in a given area.

Each year since 2001, the golden hues in water and the telltale dead fish in numerous Texas lakes have puzzled water and fish experts, Roelke said. So far more than 25 lakes and rivers in five of the state's major river basins have been identified as having golden alga populations, according to the parks and wildlife department.

"Typically, in our Texas systems these blooms are wintertime phenomena. They last through the winter months and into the spring," Roelke said. "But the organism can be found in the water at all times of the year, and the lab work we've done shows that the conditions are optimal for growth in the summer time not winter when the blooms occur.

"This indicates that something other than the physical and chemical environment influences the timing of the blooms," Roelke added.

Already this season, several fish kills – including a late August kill of perhaps "hundreds of thousands" of fish in the Brazos River near Possum Kingdom Reservoir – are pointing to golden alga found in water samples, according to parks and wildlife agency logs.

A large kill of fish this early in the season is unusual but points to the difficulty of finding solutions to prevent the microscopic plant from blooming, Roelke said.

One thing seems certain: Golden alga can't take a lot of salt in the water, he said. Also, the organism grows poorly in completely freshwater systems, such as lakes in East Texas where annual rainfall rates are high.

"Our lakes located in Central and West Texas, however, tend to be salty because they receive little inflow due to rainfall," Roelke said. "The lack of rainfall is what causes these systems to become a little salty (brackish), which is optimal for growth of golden algae."

But scientists also want to examine other factors that may influence lake life in various seasons, Roelke said.

"Something must happen in the spring and in the summer that prevents it from growing," he said. "Are there some kind of grazers (micro-crustaceans) out there that are present in the spring and are able to tolerate the toxins that this golden alga produces then can consume it? Or is there perhaps some kind of a virus in the water that attacks the golden alga organism?"

The team already discovered that toxicity can be removed by adding nutrients such as nitrogen, phosphorus, vitamins and trace metals. Roelke said more study is needed about golden alga life cycles because applying a treatment to massive bodies of water is not possible.

"But perhaps some form of fertilization could be developed and applied only in coves of lakes where the alga has been concentrated prior to blooming," Roelke said. "To prevent it there, might also stop its spread throughout the water system."

His lab will examine water collected in Lake Whitney through early November, then return to the same lake in February for another five-week collection period.

"The experiments under way right now focus on factors that influence bloom formation," he said, noting that once researchers understand that, "Management strategies can be formulated to prevent these factors from coming into play."

The experiments in the spring will focus on bloom termination.

Other researchers are examining environmental factors such as the role storm level wind may play in "mixing" the water and encouraging a growth spurt from the alga which otherwise had settled for a "resting period" in the depths for the season.

To see more about the statewide collaborative effort and learn how to report fish kills, see http://www.tpwd.state.tx.us/landwater/water/environconcerns/hab/ga/ .

To learn more about Roekle's research, go to http://wfsc.tamu.edu/roelkelab/

Kathleen Phillips | EurekAlert!
Further information:
http://wfsc.tamu.edu/roelkelab/
http://www.tpwd.state.tx.us/landwater/water/environconcerns/hab/ga/

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>