Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas Researchers Casting for Answers to Stop Alga Problem in Texas Lakes

10.10.2006
Texas researchers are hoping for a golden opportunity to reel in a solution to stop a toxic algae that has killed millions of fish in the state's lakes.

A team of Texas Agricultural Experiment Station fishery scientists this week took water samples from Lake Whitney for a new round of experiments. They are hoping for a breakthrough before winter when the golden algae typically blooms and kills perhaps hundreds of thousands of fish in one occurrence.

"If you have repeated blooms in the lakes, of this magnitude, eventually you'll destroy those recreational fisheries, for sure," said Dr. Daniel Roelke, Experiment Station aquatic ecology scientist, who spearheaded his team's sampling. "And not only that, (if) these blooms get into the state hatcheries, anything that is currently being raised at that hatchery, dies. This is a big problem and greater attention needs to be focused on this problem."

Roelke is collaborating with Dr. James Grover from the University of Texas at Arlington, Dr. Brian Brooks from Baylor University and Dr. Richard Kiesling from the U.S. Geological Survey as a multi-agency team seeking answers for the problem.

Golden alga, Prymnesium parvum, was first reported in inland Texas waters along the Pecos River in 1985. After the initial find, no occurrence was documented until 2001, Roelke said.

That year, algae blooms caused massive fish deaths in the Dundee State Fish Hatchery, about 20 miles west of Wichita Falls, according to Texas Parks and Wildlife Department biologists. "Bloom" is the term biologists use to describe a huge increase in the number of these one-celled plants in a given area.

Each year since 2001, the golden hues in water and the telltale dead fish in numerous Texas lakes have puzzled water and fish experts, Roelke said. So far more than 25 lakes and rivers in five of the state's major river basins have been identified as having golden alga populations, according to the parks and wildlife department.

"Typically, in our Texas systems these blooms are wintertime phenomena. They last through the winter months and into the spring," Roelke said. "But the organism can be found in the water at all times of the year, and the lab work we've done shows that the conditions are optimal for growth in the summer time not winter when the blooms occur.

"This indicates that something other than the physical and chemical environment influences the timing of the blooms," Roelke added.

Already this season, several fish kills – including a late August kill of perhaps "hundreds of thousands" of fish in the Brazos River near Possum Kingdom Reservoir – are pointing to golden alga found in water samples, according to parks and wildlife agency logs.

A large kill of fish this early in the season is unusual but points to the difficulty of finding solutions to prevent the microscopic plant from blooming, Roelke said.

One thing seems certain: Golden alga can't take a lot of salt in the water, he said. Also, the organism grows poorly in completely freshwater systems, such as lakes in East Texas where annual rainfall rates are high.

"Our lakes located in Central and West Texas, however, tend to be salty because they receive little inflow due to rainfall," Roelke said. "The lack of rainfall is what causes these systems to become a little salty (brackish), which is optimal for growth of golden algae."

But scientists also want to examine other factors that may influence lake life in various seasons, Roelke said.

"Something must happen in the spring and in the summer that prevents it from growing," he said. "Are there some kind of grazers (micro-crustaceans) out there that are present in the spring and are able to tolerate the toxins that this golden alga produces then can consume it? Or is there perhaps some kind of a virus in the water that attacks the golden alga organism?"

The team already discovered that toxicity can be removed by adding nutrients such as nitrogen, phosphorus, vitamins and trace metals. Roelke said more study is needed about golden alga life cycles because applying a treatment to massive bodies of water is not possible.

"But perhaps some form of fertilization could be developed and applied only in coves of lakes where the alga has been concentrated prior to blooming," Roelke said. "To prevent it there, might also stop its spread throughout the water system."

His lab will examine water collected in Lake Whitney through early November, then return to the same lake in February for another five-week collection period.

"The experiments under way right now focus on factors that influence bloom formation," he said, noting that once researchers understand that, "Management strategies can be formulated to prevent these factors from coming into play."

The experiments in the spring will focus on bloom termination.

Other researchers are examining environmental factors such as the role storm level wind may play in "mixing" the water and encouraging a growth spurt from the alga which otherwise had settled for a "resting period" in the depths for the season.

To see more about the statewide collaborative effort and learn how to report fish kills, see http://www.tpwd.state.tx.us/landwater/water/environconcerns/hab/ga/ .

To learn more about Roekle's research, go to http://wfsc.tamu.edu/roelkelab/

Kathleen Phillips | EurekAlert!
Further information:
http://wfsc.tamu.edu/roelkelab/
http://www.tpwd.state.tx.us/landwater/water/environconcerns/hab/ga/

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>