Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New flood-tolerant rice offers relief for world's poorest farmers

A gene that enables rice to survive complete submergence has been identified by a team of researchers at the International Rice Research Institute in the Philippines and at the University of California's Davis and Riverside campuses.

The discovery allows for development of new rice varieties that can withstand flooding, thus overcoming one of agriculture's oldest challenges and offering relief to millions of poor rice farmers around the world.

While rice thrives in standing water, like all crops it will die if completely submerged for more than a few days. The development and cultivation of the new varieties is expected to increase food security for 70 million of the world's poorest people, and may reduce yield losses from weeds in areas like the United States where rice is seeded in flooded fields. Results of this study will appear in the Aug. 10 issue of the journal Nature.

"Globally, rice is the most important food for humans, and each year millions of small farmers in the poorest areas of the world lose their entire crops to flooding," said Pamela Ronald, a rice geneticist and chair of UC Davis' Plant Genomics Program. "Our research team anticipates that these newly developed rice varieties will help ensure a more dependable food supply for poor farmers and their families. And, in the long run, our findings may allow rice producers in the United States to reduce the amount of herbicides used to fight weeds."


Rice is the primary food for more than 3 billion people around the world. Approximately one-fourth of the global rice crop is grown in rain-fed, lowland plots that are prone to seasonal flooding. These seasonal flash floods are extremely unpredictable and may occur at any growth stage of the rice crop.

While rice is the only cereal crop that can withstand submergence at all, most rice varieties will die if fully submerged for too long. When the plant is covered with water, its oxygen and carbon dioxide supplies are reduced, which interferes with photosynthesis and respiration. Because the submerged plants lack the air and sunlight they need to function, growth is inhibited, and the plants will die if they remain under water for more than four days.

During any given year, yield losses resulting from flooding in these lowland areas may range from 10 percent to total destruction, depending on the water depth, age of the plant, how long the plants are submerged, water temperature, rate of nitrogen fertilizer use and other environmental factors. Annual crop loss has been estimated at more than $1 billion.

"For half a century, researchers have been trying to introduce submergence tolerance into the commonly grown rice varieties through conventional breeding," said rice geneticist and study co-author David Mackill, who heads the Division of Plant Breeding, Genetics, and Biotechnology at the International Rice Research Institute. "Several traditional rice varieties have exhibited a greater tolerance to submergence, but attempts to breed that tolerance into commercially viable rice failed to generate successful varieties.

"We're especially pleased that we have been able to use the latest advances in molecular biology to help improve the lives of the world's poor," Mackill added. "We're confident that even more important discoveries like this are in the pipeline."

Results of this study

Using genetic mapping techniques, the research team identified a cluster of three genes that appeared closely linked to the biological processes that either make rice plants vulnerable to flooding or enable them to withstand the total submergence that occurs during flooding.

The researchers then focused their attention on one of those three genes, known as the Sub1A gene. They found that when this gene is over-expressed, or hyper-activated, a rice variety that is normally intolerant of submergence becomes tolerant.

Further studies indicated that the Sub1A gene is likely successful in conferring submergence tolerance to rice because it affects the way the plants respond to hormones, such as ethylene and giberellic acid, that are key to the plant's ability to survive even when inundated with water.

Going one step further, the researchers introduced the Sub1A gene into a rice variety that is especially suited for growing conditions in India. The resulting rice plants were not only tolerant of being submerged in water but also produced high yields and retained other beneficial crop qualities. Development of submergence-tolerant varieties for commercial production in Laos, Bangladesh and India is now well under way.

In addition to providing a more stable supply of rice in developing countries, the researchers are hoping that the new gene will be useful in suppressing weeds and reducing herbicide applications for conventional and organic rice farmers in developed countries like the United States. If water can be left on the rice for an additional week, it is expected that weed populations will be reduced.

The research team is now trying to identify all the genes that are regulated by Sub1A and to use this information to further improve tolerance to flooding and other stresses.

Pamela Ronald | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>