Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New flood-tolerant rice offers relief for world's poorest farmers

10.08.2006
A gene that enables rice to survive complete submergence has been identified by a team of researchers at the International Rice Research Institute in the Philippines and at the University of California's Davis and Riverside campuses.

The discovery allows for development of new rice varieties that can withstand flooding, thus overcoming one of agriculture's oldest challenges and offering relief to millions of poor rice farmers around the world.

While rice thrives in standing water, like all crops it will die if completely submerged for more than a few days. The development and cultivation of the new varieties is expected to increase food security for 70 million of the world's poorest people, and may reduce yield losses from weeds in areas like the United States where rice is seeded in flooded fields. Results of this study will appear in the Aug. 10 issue of the journal Nature.

"Globally, rice is the most important food for humans, and each year millions of small farmers in the poorest areas of the world lose their entire crops to flooding," said Pamela Ronald, a rice geneticist and chair of UC Davis' Plant Genomics Program. "Our research team anticipates that these newly developed rice varieties will help ensure a more dependable food supply for poor farmers and their families. And, in the long run, our findings may allow rice producers in the United States to reduce the amount of herbicides used to fight weeds."

Background

Rice is the primary food for more than 3 billion people around the world. Approximately one-fourth of the global rice crop is grown in rain-fed, lowland plots that are prone to seasonal flooding. These seasonal flash floods are extremely unpredictable and may occur at any growth stage of the rice crop.

While rice is the only cereal crop that can withstand submergence at all, most rice varieties will die if fully submerged for too long. When the plant is covered with water, its oxygen and carbon dioxide supplies are reduced, which interferes with photosynthesis and respiration. Because the submerged plants lack the air and sunlight they need to function, growth is inhibited, and the plants will die if they remain under water for more than four days.

During any given year, yield losses resulting from flooding in these lowland areas may range from 10 percent to total destruction, depending on the water depth, age of the plant, how long the plants are submerged, water temperature, rate of nitrogen fertilizer use and other environmental factors. Annual crop loss has been estimated at more than $1 billion.

"For half a century, researchers have been trying to introduce submergence tolerance into the commonly grown rice varieties through conventional breeding," said rice geneticist and study co-author David Mackill, who heads the Division of Plant Breeding, Genetics, and Biotechnology at the International Rice Research Institute. "Several traditional rice varieties have exhibited a greater tolerance to submergence, but attempts to breed that tolerance into commercially viable rice failed to generate successful varieties.

"We're especially pleased that we have been able to use the latest advances in molecular biology to help improve the lives of the world's poor," Mackill added. "We're confident that even more important discoveries like this are in the pipeline."

Results of this study

Using genetic mapping techniques, the research team identified a cluster of three genes that appeared closely linked to the biological processes that either make rice plants vulnerable to flooding or enable them to withstand the total submergence that occurs during flooding.

The researchers then focused their attention on one of those three genes, known as the Sub1A gene. They found that when this gene is over-expressed, or hyper-activated, a rice variety that is normally intolerant of submergence becomes tolerant.

Further studies indicated that the Sub1A gene is likely successful in conferring submergence tolerance to rice because it affects the way the plants respond to hormones, such as ethylene and giberellic acid, that are key to the plant's ability to survive even when inundated with water.

Going one step further, the researchers introduced the Sub1A gene into a rice variety that is especially suited for growing conditions in India. The resulting rice plants were not only tolerant of being submerged in water but also produced high yields and retained other beneficial crop qualities. Development of submergence-tolerant varieties for commercial production in Laos, Bangladesh and India is now well under way.

In addition to providing a more stable supply of rice in developing countries, the researchers are hoping that the new gene will be useful in suppressing weeds and reducing herbicide applications for conventional and organic rice farmers in developed countries like the United States. If water can be left on the rice for an additional week, it is expected that weed populations will be reduced.

The research team is now trying to identify all the genes that are regulated by Sub1A and to use this information to further improve tolerance to flooding and other stresses.

Pamela Ronald | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>