Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bird flu drug promises to beat the problem of resistance

08.08.2006
A new kind of drug to fight bird flu that will not suffer from the same kind of resistance problems as current treatments should begin clinical trials within the next three years, thanks to a new research grant.

Dr Andrew Watts from the University of Bath (UK) and Dr Jennifer McKimm-Breschkin from CSIRO (Australia) have been awarded over £408,000 from the Medical Research Council (MRC) to develop a new class of inhibitor they have discovered into a new kind of antiviral influenza drug.

The search for an alternative flu drug has become all the more pressing as the full extent of resistance – the ability of the influenza virus to withstand drug treatments - becomes more widely understood.

Both Tamiflu and Relenza, the two drugs currently being stockpiled by governments in preparation for a global outbreak of bird flu, are inherently susceptible to resistance because of the way they work.

The first major warning of the practical implications of this came with research published in the New England Journal of Medicine in December 2005.

This reported that from a group of eight Vietnamese bird flu patients treated with Tamiflu (also known as Oseltamivir), two patients showed initial signs of recovery before eventually dying. This suggests that the influenza virus was able to rapidly develop resistance to the drug.

In another study in Japan, the virus developed resistance in one in six children treated with Tamiflu for ordinary forms of flu.

Although acting upon the same target on the influenza virus as existing treatments, the new drug molecules being developed are specific for a part of the virus that is unable to mutate (change), which means it should be impossible for the influenza virus to develop resistance.

“Tamiflu and Relenza remain our best lines of defence against a flu pandemic, but we need to be working on better alternatives that do not suffer the same inherent resistance problems,” said Dr Andrew Watts from the Department of Pharmacy and Pharmacology at the University of Bath.

“We are still in the very early stages of the development of this class of molecules into a drug, but the initial tests, and what we already know about how it works, are very, very encouraging.

“By the time the influenza virus becomes fully resistant to the drugs currently in use, we should have this as a viable alternative.”

Dr McKimm-Breschkin is also very optimistic about the new project.

“We are aiming to produce a likely drug candidate within the three year period,” she said.

“However, given the long period of time it takes to properly trial and evaluate a new anti-viral drug, it could be up to fifteen years before we see the resulting treatment on the shelves.”

Whilst Dr Watts will be making the molecules at the University of Bath, the initial trials on the influenza virus will be carried out by Dr Mckimm-Breschkin at CSIRO in Melbourne.

CSIRO was instrumental in developing the world’s first anti-flu drug effective against all strains of flu. Dr McKimm-Breschkin was part of the team that developed Relenza which remains one of only two drugs considered effective treatments against avian influenza, and she has also carried out much of the research on influenza drug resistance.

How it works

The flu virus is like a football coated with two different types of enzymes. These are proteins which carry out specific jobs for the virus.

The first of these proteins, haemagglutinin (H), helps the virus to invade cells in the throat whilst the second, neuraminidase (N), allows the new virus particles to chop their way off the surface of an infected cell so that they can spread to infect other cells.

(Differences in the H and N proteins allow scientists to distinguish between the different types of influenza virus. For instance, the current strain of avian influenza circulating is H5N1)

Relenza, Tamiflu and the new class of molecules being developed, are known as neuraminidase inhibitors because they prevent the neuraminidase enzyme from working properly.

The drugs can do this because their molecular structure closely resembles the molecules the enzyme normally attaches to on the infected cell, except the drug molecules bind much tighter to the neuraminidase.

Rather than interacting with the molecules on the surface of the infected cell, the neuraminidase enzyme binds to the drug instead. The drug physically gets in the way and inhibits the action of the enzyme.

This stops the virus from spreading to new cells and helps to reduce the severity and duration of flu so that the body’s own defence mechanisms, together with other medical interventions, can help aid recovery.

However, the influenza virus can develop resistance to the drugs by mutating, or changing, parts of its surface that Tamiflu and Relenza absolutely need to achieve their strong binding to the neuraminidase. When this happens, the neuraminidase is able to escape from the drug and continue its job.

The new class of molecule being developed by the University of Bath and CSIRO researchers blocks the action of the neuraminidase in a very different manner, by undergoing a chemical reaction with protein. Furthermore, this chemical reaction only takes place at one specific part of the neuraminidase, a part that is essential for the neuraminidase to carry out its natural job.

This process stops the neuraminidase enzyme in its tracks, and makes it impossible for the virus to develop resistance to the new molecule.

The researchers are currently narrowing-down the class of molecules they have discovered to identify the best candidate for developing a drug. They will then need to refine the delivery mechanisms and begin trials that will ensure its efficacy in patients.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/articles/releases/birdflu070806.html

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>