Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hybrid Peppers Developed at Hebrew University Achieve Worldwide Sales Success

Genetically enhanced hybrid peppers developed at the Hebrew University of Jerusalem that can be raised with minimal protection under moderate winter conditions have achieved worldwide commercial success. Pepper is one of the major vegetable crops in the world and in Israel.

The robust pepper varieties were developed by a research tem headed by Dr. Yonatan Elkind of the Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University’s Faculty of Agricultural, Food and Environmental Quality Sciences in Rehovot. The research receives financial support from and is carried out in collaboration with the Zeraim Gedera company. For his work, Dr. Elkind is a recipient of one of this year’s Kaye Innovation Awards, to be presented at the Hebrew University’s 69th Board of Governors meeting on June 13.

The genetic improvements embodied in the peppers they have developed widen the ecological conditions under which they can be grown and also facilitate the use of simple greenhouses and netting instead of expensive structures.

The peppers, in various colors, have been raised to produce high yields under night-time conditions as low as 10 degrees celcius, which is much lower than previous hybrids that required temperatures higher than 18 degrees celcius and needed costly heating to grow and develop.

The new hybrids are characterized by high yields, a long growing season, resistance to viruses, firm fruit, good vine storage capacity, long shelf-life, and low sensitivity to cracking.

The breeding project involved large-scale experiments with more than 25,000 plants a year, grown in target areas, mainly in the Arava region of southern Israel and the south of Spain. Dr. Elkind noted that vegetable production under mild winter conditions and using simple plastic or net protection is one of the most rapidly expanding, protective cultivation systems worldwide. The major areas which use this production method, in addition to Israel and Spain, are Mexico and China.

The hybrids developed by the researchers – which to a large extent have replaced seed varieties formerly imported into Israel from Holland – have been commercialized through Yissum, the Hebrew University’s technology transfer company, and are sold worldwide by the Zeraim Gedera seed company. In 2005, sales of the hybrid seeds amounted to $9.5 million and are expected to increase. In the Arava alone, 50 percent of red pepper seeds used are those developed at the Hebrew University, and have contributed significantly to the profitability of farmers in that region. Overall, in the 2004-05 growing season, pepper exports from Israel amounted to $80 million and constituted the leading vegetable export from the country.

The Kaye Innovation Awards at the Hebrew University have been awarded annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff, and students of the Hebrew University to develop innovative methods and inventions with good commercial potential which will benefit the university and society.

Jerry Barach | The Hebrew University of Jerusal
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>