Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prenatal Genistein In Soy Reduces Obesity In Offspring

A single nutrient found in soy products elicits changes in gene behavior that permanently reduce an embryo’s risk of becoming obese later in life, according to an animal study at Duke University Medical Center.

The findings, yet to be confirmed in humans, could explain why Asians have lower rates of obesity and cancer, said the Duke researchers. Asians consume large amounts of soy, which has been linked to lower rates of breast, endometrial and prostate cancer, among other health benefits.

In the Duke study, pregnant Agouti mice that ate a diet rich in genistein, an active ingredient in soy, gave birth to pups that stayed slimmer as adults. Mice that did not receive genistein in utero were much heavier as adults – double the weight of their genistein-fed counterparts. Prenatal genistein also shifted the offspring’s coat color from yellow to brown, demonstrating that a single nutrient can have a widespread systemic impact, said the researchers.

Genistein’s effect occurred early in pregnancy, the equivalent of eight gestational days in humans. The Duke scientists said their results lend support to the "developmental origins of adult disease" hypothesis, in which an individual’s long-term health is influenced by prenatal factors.

Results of the study, funded by the National Institute of Environmental Health Sciences and the National Cancer Institute, are published in the April 1, 2006, issue of the journal Environmental Health Perspectives.

"We are increasingly finding that our parent’s and even our grandparent’s nutritional status and environmental exposures can regulate our future risk of disease," said Randy Jirtle, Ph.D., professor of radiation oncology and senior author of the study. "In other words, it may not only be the hamburgers and fries we are eating, but also what our parents consumed or encountered in the environment that predisposes us to various conditions."

Jirtle said a mechanism called DNA "methylation" is increasingly identified as the trigger for environmentally-caused gene alterations. During this process, a person’s exposure to chemicals, nutrients, or even a behavioral experience such as nurturing can elicit a change in how a specific gene behaves – but without altering the genetic sequence in any way.

Rather, the exposure or event prompts a quartet of atoms or "methyl group" to attach to the regulatory region of a gene, where it acts as a switch to activate or silence the gene. Such an effect is called "epigenetic" because it occurs over and above the gene sequence without altering any of the letters of the gene’s four-unit code, said Jirtle. Micronutrients can change the extent of DNA methylation by directly donating methyl groups or by altering the efficiency by which DNA methylation is modified, said Jirtle.

In the current study, maternal dietary genistein caused a single mouse gene called "agouti" to become methylated at six specific sites near its regulatory region, thereby reducing the gene’s expression. The agouti methylation consistently occurred throughout several germ layers of embryonic tissue, indicating that genistein acted during early embryonic development. Moreover, the methylation changes persisted into adulthood, providing the first evidence that in utero dietary genistein alters epigenetic gene regulation, coat color, and susceptibility to adult obesity in animals.

The agouti gene is not epigentically regulated in humans as it is in the Agouti mouse, said Jirtle. But soy’s potential benefits could exert themselves through other human genes whose expression is altered by DNA methylation, he said.

"Methylation is a common event in the human genome, and it is a highly malleable effect that occurs during rapid periods of development, but it can also occur in childhood and even in adulthood," he said.

Because many infants receive soy milk, the impact of genistein in humans should be carefully assessed, he said. Pregnant women are exposed to hundreds of compounds in foods, prenatal vitamins and the environment that could potentially methylate susceptible genes, he said. The effects of each compound could be beneficial or detrimental, depending upon the timing of exposure, the dose and the tissue exposed, said Jirtle.

"Our study demonstrates there are highly sensitive windows early in development when environmental exposures can permanently alter the offspring’s adult susceptibility to disease," said Jirtle. "Therefore, we need to examine the effect of environmental exposures during pregnancy, not just in adulthood, if we want to accurately assess their risk or benefit to humans."

His earlier research demonstrated that four common nutritional supplements fed to pregnant mice, including folic acid and vitamin B12, lowered their offspring’s susceptibility to obesity, diabetes and cancer by methylating the same agouti gene. Yet how nutrients interact in combination or in extremely high doses remains unclear, he said.

"There could be additive or synergistic effects between folic acid and genistein, or any such compounds, that hypermethylate certain genes," said Dana Dolinoy, MPH, lead author of the study. "What is good in small amounts could be harmful in large amounts. We simply don’t know the effects of literally hundreds of compounds that we intentionally or inadvertently ingest or encounter each day."

Of related concern, soy is a staple of almost all laboratory mouse diets. Soy could inadvertently methylate select genes and thus mask the deleterious effects of various chemicals being tested for their risk in humans, she said.

"In the future, we may be able to potentially select compounds to protect a person from being predisposed to developing a variety of conditions," said Jirtle. "There is a vast, unknown potential for studying how our environment interacts with our epigenome to determine how we developed and who we will become."

Becky Levine | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
22.03.2018 | Technische Universität Dresden

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>