Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report shows deforestation threatens Brazil’s Pantanal

11.01.2006
Almost half of the Paraguay River Basin that includes vast Pantanal wetlands already transformed into grazing and crop lands

Deforestation from increased grazing and agriculture has destroyed 17 percent of the native vegetation in Brazil’s Pantanal, considered the world’s largest wetland.

A new study published by Conservation International sounds an alarm for the Paraguay River Basin, which includes the Pantanal. Continued deforestation at the current rate would cause all of the Pantanal’s original vegetation to disappear in 45 years, according to CI researchers in Brazil.

Overall, opening the region to more grazing and agriculture, including the transformation of native pasture to farmland, has destroyed almost 45 percent of the original vegetation in the Paraguay River Basin. The river basin covers approximately 600,000 square kilometers, 60 percent of it within Brazilian territory. It includes the Pantanal, which comprises 41 percent of the entire basin. The Pantanal is a Brazilian National Heritage site, a significant site of international relevance according to the RAMSAR Wetlands Areas Convention, and a UNESCO Biosphere Reserve.

The CI scientists analyzed satellite images to compare the proportion of deforested areas with those that still have native vegetation. They concluded that agriculture, cattle grazing and coal mining are the major threats to the Paraguay River Basin, a significant hydrographical drainage of the South American continent.

Titled "Estimated Loss of Natural Area in the High Paraguay River Basin and the Brazilian Pantanal," the report produced by the Pantanal Program of CI-Brazil depicts a critical situation. As of 2004, it says, approximately 44 percent of the area’s original vegetation had been altered, with some districts in the Paraguay River Basin losing more than 90 percent of their vegetation.

"It is extremely important to conserve the areas surrounding the Pantanal lowlands, because they are the headwaters of the rivers that make up the Pantanal," said Sandro Menezes, manager of CI-Brazil’s Pantanal’s Program. "These locations contribute to wildlife populations and serve as refuges for the fauna during unfavorable seasons, sheltering species that migrate to avoid floods and climate extremes."

Losing native vegetation causes soil degradation and changes the hydrological processes, which determine the dry and wet cycles and are largely responsible for the biological richness of the region. That in turn can compromise resources such as food and breeding sites offered by the forests and other types of vegetation. An example is the hyacinth macaw, a species threatened with extinction, which depends on a tree commonly called ’manduvi’ (Sterculia apetala) for shelter and reproduction. Without this specific tree, chances are that the hyacinth macaw will disappear.

According to the report, urgent actions required to reverse the situation include increased government regulation and better coordination of conservation efforts at various government levels (municipal, state and federal); a review of current legislation regarding protected areas and legal reserves for the region; and implementation of a broad environmental restoration program in devastated areas.

Tom Cohen | EurekAlert!
Further information:
http://www.conservation.org
http://www.conservation.org.br/onde/pantanal

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>